skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fathizadeh, Arman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Membranes serve diverse functions in biological systems. Variations in their molecular compositions impact their physical properties and lead to rich phase behavior such as switching from the gel to fluid phase and/or separation to micro- and macrodomains with different molecular compositions. We present a combined computational and experimental study of the phase behavior of a mixed membrane of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) molecules. This heterogeneous membrane changes from gel to fluid and shows separate domains as a function of temperature. Atomically detailed simulations provide microscopic information about these molecular assemblies. However, these systems are challenging for computations since approaching equilibrium necessitates exceptionally long molecular dynamics trajectories. We use the simulation method of MDAS (Molecular Dynamics with Alchemical Steps) to generate adequate statistics. Isotope-edited IR spectroscopy of the lipids was used to benchmark the simulations. Together, simulations and experiments provide insight into the structural and dynamical features of the phase diagram. 
    more » « less