skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fausnaugh, M. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present 307 type Ia supernova (SN) light curves from the first 4 yr of the Transiting Exoplanet Survey Satellite mission. We use this sample to characterize the shapes of the early-time light curves, measure the rise times from first light to peak, and search for companion star interactions. Using simulations, we show that light curves must have noise <10% of the peak flux to avoid biases in the early-time light-curve shape, restricting our quantitative analysis to 74 light curves. We find that the mean power-law index t β 1 of the early-time light curves isβ1= 1.93 ± 0.57, and the mean rise time to peak is 15.7 ± 3.5 days. The underlying population distribution forβ1may instead consist of a Gaussian component with mean 2.29, width 0.34, and a long tail extending to values less than 1.0. We find that the data can rarely distinguish between models with and without companion interaction models. Nevertheless, we find three high-quality light curves that tentatively prefer the addition of a companion interaction model, but the statistical evidence for the companion interactions is not robust. We also find two SNe that disfavor the addition of a companion interaction model to a curved power-law model. Taking the 74 SNe together, we calculate 3σupper limits on the presence of companion signatures to control for orientation effects that can hide companions in individual light curves. Our results rule out common progenitor systems with companions having Roche lobe radii >31R(separations >5.7 × 1012cm, 99.9% confidence level) and disfavor companions having Roche lobe radii >10R(separations >1.9 × 1012cm, 95% confidence level). Lastly, we discuss the implications of our results for the intrinsic fraction of single degenerate progenitor systems. 
    more » « less
  2. ABSTRACT We broadly explore the effects of systematic errors on reverberation mapping lag uncertainty estimates from javelin and the interpolated cross-correlation function (ICCF) method. We focus on simulated light curves from random realizations of the light curves of five intensively monitored AGNs. Both methods generally work well even in the presence of systematic errors, although javelin generally provides better error estimates. Poorly estimated light-curve uncertainties have less effect on the ICCF method because, unlike javelin , it does not explicitly assume Gaussian statistics. Neither method is sensitive to changes in the stochastic process driving the continuum or the transfer function relating the line light curve to the continuum. The only systematic error we considered that causes significant problems is if the line light curve is not a smoothed and shifted version of the continuum light curve but instead contains some additional sources of variability. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract We have recently initiated the first spectroscopic dust reverberation programme on active galactic nuclei in the near-infrared. Spectroscopy enables measurement of dust properties, such as flux, temperature, and covering factor, with higher precision than photometry. In particular, it enables measurement of both luminosity-based dust radii and dust response times. Here we report results from a 1 yr campaign on NGC 5548. The hot dust responds to changes in the irradiating flux with a lag time of ∼70 light-days, similar to what was previously found in photometric reverberation campaigns. The mean and rms spectra are similar, implying that the same dust component dominates both the emission and the variations. The dust lag time is consistent with the luminosity-based dust radius only if we assume a wavelength-independent dust emissivity law, i.e. a blackbody, which is appropriate for grains of large sizes (of a few μm). For such grains the dust temperature is ∼1450 K. Therefore, silicate grains have most likely evaporated and carbon is the main chemical component. But the hot dust is not close to its sublimation temperature, contrary to popular belief. This is further supported by our observation of temperature variations largely consistent with a heating/cooling process. Therefore, the inner dust-free region is enlarged and the dusty torus rather a ‘dusty wall’, whose inner radius is expected to be luminosity-invariant. The dust-destruction mechanism that enlarges the dust-free region seems to also partly affect the dusty region. We observe a cyclical decrease in dust mass with implied dust reformation times of ∼5–6 months. 
    more » « less
  7. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is one of the most intensive multi-wavelength AGN monitoring campaigns ever. For most of the campaign,the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60-70 day holiday, suggesting that unobserved changes to the ionizing continuum were present. To understand this remarkable phenomenon and to obtain an independent assessment of the ionizing continuum variations, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In this cycle, variations in this obscurer’s line-of-sight covering factor modify the soft X-ray continuum, changing the ionization of helium. Ionizing radiation produced by recombining helium then affects the level of ionization of some ions seen by HST. In particular, high-ionization species are affected by changes in the obscurer covering factor, which does not affect the optical or UV continuum, so appear as uncorrelated changes, a “holiday”. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission-line behavior observed. 
    more » « less
  8. null (Ed.)
    We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright ( V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078  M J planet in a grazing transit configuration with an impact parameter of b = 1.17 −0.08 +0.10 . As a result the radius is poorly constrained, 2.03 −0.49 +0.61 R J . The planet’s distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q s ′ = 10 7 − 10 9 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13  M J and a radius of 1.29 ± 0.02  R J . It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star ( V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06  M J and a radius of 1.09 −0.05 +0.08 R J . Despite having the longest orbital period ( P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. 
    more » « less
  9. null (Ed.)
  10. null (Ed.)