skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Favata, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Black holes (BHs) with masses between 3 5 M , produced by a binary neutron star (BNS) merger, can further pair up with a neutron star or BH and merge again within a Hubble time. However, the astrophysical environments in which this can happen and the rate of such mergers are open questions in astrophysics. Gravitational waves may play an important role in answering these questions. In this context, we discuss the possibility that the primary of the recent LIGO-Virgo-KAGRA binary GW230529_181500 (GW230529, in short) is the product of a previous BNS merger. Invoking numerical relativity (NR)-based fitting formulas that map the binary constituents’ masses and tidal deformabilities to the mass, spin, and kick velocity of the remnant BH, we investigate the potential parents of GW230529’s primary. Our calculations using NR fits based on BNS simulations reveal that the remnant of a high-mass BNS merger similar to GW190425 is consistent with the primary of GW230529. This argument is further strengthened by the gravitational wave-based merger rate estimation of GW190425-like and GW230529-like populations. We show that around 18% (median) of the GW190425-like remnants could become the primary component in GW230529-like mergers. The dimensionless tidal deformability parameter of the heavier neutron star in the parent binary is constrained to 67 61 + 163 at 90% credibility. Using estimates of the gravitational-wave kick imparted to the remnant, we also discuss the astrophysical environments in which these types of mergers can take place and the implications for their future observations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We propose a Bayesian inference framework to predict the merger history of LIGO-Virgo binary black holes (BHs), whose binary components may have undergone hierarchical mergers in the past. The framework relies on numerical relativity predictions for the mass, spin, and kick velocity of the remnant BHs. This proposed framework computes the masses, spins, and kicks imparted to the remnant of the parent binaries, given the initial masses and spin magnitudes of the binary constituents. We validate our approach by performing an “injection study” based on a constructed sequence of hierarchically formed binaries. Noise is added to the final binary in the sequence, and the parameters of the “parent” and “grandparent” binaries in the merger chain are then reconstructed. This method is then applied to three GWTC-3 events: GW190521, GW200220_061928, and GW190426_190642. These events were selected because at least one of the binary companions lies in the putative pair-instability supernova mass gap, in which stellar processes alone cannot produce BHs. Hierarchical mergers offer a natural explanation for the formation of BHs in the pair-instability mass gap. We use the backward evolution framework to predict the parameters of the parents of the primary companion of these three binaries. For instance, the parent binary of GW190521 has masses 72 22 + 32 M and 31 23 + 24 M within the 90% credible interval. Astrophysical environments with escape speeds ≥100 km s−1are preferred sites to host these events. Our approach can be readily applied to future high-mass gravitational wave events to predict their formation history under the hierarchical merger assumption. 
    more » « less
  3. The inspiral-merger-ringdown (IMR) consistency test checks the consistency of the final mass and final spin of a binary black hole merger remnant, independently inferred via the inspiral and merger-ringdown parts of the waveform. As binaries are expected to be nearly circularized when entering the frequency band of ground-based detectors, tests of general relativity (GR) currently employ quasicircular waveforms. We quantify the effect of residual orbital eccentricity on the IMR consistency test. We find that eccentricity causes a significant systematic bias in the inferred final mass and spin of the remnant black hole at an orbital eccentricity (defined at 10 Hz) of e0≳0.1 in the LIGO band (for a total binary mass in the range 65-200M⊙). For binary black holes observed by Cosmic Explorer (CE), the systematic bias becomes significant for e0≳0.015 (for 200-600M⊙ systems). This eccentricity-induced bias on the final mass and spin leads to an apparent inconsistency in the IMR consistency test, manifesting as a false violation of GR. Hence, eccentric corrections to waveform models are important for constructing a robust test of GR, especially for third-generation detectors. We also estimate the eccentric corrections to the relationship between the inspiral parameters and the final mass and final spin; they are shown to be quite small. 
    more » « less