skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fei Han, Hua Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Loop closure detection is a critical component of large-scale simultaneous localization and mapping (SLAM) in loopy environments. This capability is challenging to achieve in long-term SLAM, when the environment appearance exhibits significant long-term variations across various time of the day, months, and even seasons. In this paper, we introduce a novel formulation to learn an integrated long-term representation based upon both holistic and landmark information, which integrates two previous insights under a unified framework: (1) holistic representations outperform keypoint-based representations, and (2) landmarks as an intermediate representation provide informative cues to detect challenging locations. Our new approach learns the representation by projecting input visual data into a low-dimensional space, which preserves both the global consistency (to minimize representation error) and the local consistency (to preserve landmarks’ pairwise relationship) of the input data. To solve the formulated optimization problem, a new algorithm is developed with theoretically guaranteed convergence. Extensive experiments have been conducted using two large-scale public benchmark data sets, in which the promising performances have demonstrated the effectiveness of the proposed approach. 
    more » « less