skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fei-Fei, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments. 
    more » « less
  2. Video-language models (VLMs), large models pre-trained on numerous but noisy video-text pairs from the internet, have revolutionized activity recognition through their remarkable generalization and open-vocabulary capabilities. While complex human activities are often hierarchical and compositional, most existing tasks for evaluating VLMs focus only on high-level video understanding, making it difficult to accurately assess and interpret the ability of VLMs to understand complex and fine-grained human activities. Inspired by the recently proposed MOMA framework, we define activity graphs as a single universal representation of human activities that encompasses video understanding at the activity, sub10 activity, and atomic action level. We redefine activity parsing as the overarching task of activity graph generation, requiring understanding human activities across all three levels. To facilitate the evaluation of models on activity parsing, we introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs), a large dataset of complex human activities with activity graph annotations that can be readily transformed into natural language sentences. Lastly, we present a model-agnostic and lightweight approach to adapting and evaluating VLMs by incorporating structured knowledge from activity graphs into VLMs, addressing the individual limitations of language and graphical models. We demonstrate a strong performance on activity parsing and few-shot video classification, and our framework is intended to foster future research in the joint modeling of videos, graphs, and language. 
    more » « less
  3. null (Ed.)