skip to main content


Search for: All records

Creators/Authors contains: "Fejer, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical modeling of ultrashort pulse propagation is important for designing and understanding the underlying dynamical processes in devices that take advantage of highly nonlinear interactions in dispersion-engineered optical waveguides. Once the spectral bandwidth reaches an octave or more, multiple types of nonlinear polarization terms can drive individual optical frequencies. This issue is particularly prominent inχ(2)devices where all harmonics of the input pulse are generated and there can be extensive spectral overlap between them. Single-envelope approaches to pulse propagation have been developed to address these complexities; this has led to a significant mismatch between the strategies used to analyze moderate-bandwidth devices (usually involving multi-envelope models) and those used to analyze octave-spanning devices (usually involving models with one envelope per waveguide mode). Here we unify the different strategies by developing a common framework, applicable to any optical bandwidth, that allows for a side-by-side comparison between single- and multi-envelope models. We include bothχ(2)andχ(3)interactions in these models, with emphasis onχ(2)interactions. We show a detailed example based on recent supercontinuum generation experiments in a thin-film LiNbO3on sapphire quasi-phase-matching waveguide. Our simulations of this device show good agreement between single- and multi-envelope models in terms of the frequency comb properties of the electric field, even for multi-octave-spanning spectra. Building on this finding, we explore how the multi-envelope approach can be used to develop reduced models that help build physical insights about new ultrafast photonics devices enabled by modern dispersion-engineered waveguides, and discuss practical considerations for the choice of such models. More broadly, we give guidelines on the pros and cons of the different modeling strategies in the context of device design, numerical efficiency, and accuracy of the simulations.

     
    more » « less
  2. We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  3. The sensitivity of gravitational-wave detectors is limited by the mechanical loss associated with the amorphous coatings of the detectors’ mirrors. Amorphous silicon has higher refraction index and lower mechanical loss than current high-index coatings, but its optical absorption at the wavelength used for the detectors is at present large. The addition of hydrogen to the amorphous silicon network reduces both optical absorption and mechanical loss for films prepared under a range of conditions at all measured wavelengths and temperatures, with a particularly large effect on films grown at room temperature. The uptake of hydrogen is greatest in the films grown at room temperature, but still below 1.5 at.% H, which show an ultralow optical absorption (below 10 ppm) measured at 2000 nm for 500-nm-thick films. These results show that hydrogenation is a promising strategy to reduce both optical absorption and mechanical loss in amorphous silicon, and may enable fabrication of mirror coatings for gravitational-wave detectors with improved sensitivity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available September 12, 2024
  5. Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enablingχ(2)interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W−1cm−2) and, to our knowledge, the first degenerateχ(2)optical parametric amplifier (with an estimated normalized gain of 0.6dBW−1/2cm−1) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication.

     
    more » « less
  6. In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings. 
    more » « less
  7. Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1–2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.

     
    more » « less
  8. Abstract

    This article reviews recent progress in quasi-phasematchedχ(2)nonlinear nanophotonics, with a particular focus on dispersion-engineered nonlinear interactions. Throughout this article, we establish design rules for the bandwidth and interaction lengths of various nonlinear processes, and provide examples for how these processes can be engineered in nanophotonic devices. In particular, we apply these rules towards the design of sources of non-classical light and show that dispersion-engineered devices can outperform their conventional counterparts. Examples include ultra-broadband optical parametric amplification as a resource for measurement-based quantum computation, dispersion-engineered spontaneous parametric downconversion as a source of separable biphotons, and synchronously pumped nonlinear resonators as a potential route towards single-photon nonlinearities.

     
    more » « less
  9. We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number (i.e., dozens to hundreds) of pump photons. Due to the strong optical nonlinearities necessarily involved in this regime, squeezing occurs alongside significant pump depletion, compromising the predictions made by conventional semiclassical models for squeezing. Furthermore, nonlinear interactions among multiple frequency modes render the system dynamics exponentially intractable in naïve quantum models, requiring a more sophisticated modeling framework. To this end, we construct a nonlinear Gaussian approximation to the squeezing dynamics, defining a “Gaussian interaction frame” in which non-Gaussian quantum dynamics can be isolated and concisely described using a few dominant (i.e., principal) supermodes. Numerical simulations of our model reveal non-Gaussian distortions of squeezing in the mesoscopic regime, largely associated with signal-pump entanglement. We argue that state of the art in nonlinear nanophotonics is quickly approaching this regime, providing an all-optical platform for experimental studies of the semiclassical-to-quantum transition in a rich paradigm of coherent, multimode nonlinear dynamics. Mesoscopic pulsed squeezing, thus, provides an intriguing case study of the rapid rise in dynamic complexity associated with semiclassical-to-quantum crossover, which we view as a correlate of the emergence of new information processing capacities in the quantum regime.

     
    more » « less