skip to main content

Search for: All records

Creators/Authors contains: "Fejer, Martin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Optical parametric amplification is one of the most flexible approaches for generating coherent light at long wavelengths, but typical implementations require prohibitively large pump pulse energies to realize useful amounts of gain. In this work, we experimentally demonstrate an approach to optical parametric amplification in which an interplay between parametric gain and symmetric temporal walk-off confines the non-degenerate signal and idler to form a three-wave soliton. Gain-trapped solitons propagate stably over arbitrarily long interaction lengths, which reduces the energy required for high-gain operation by orders of magnitude. The devices demonstrated here realize large parametric gains (>70dB) with only picojoules of pump pulse energy in a 5-mm-long thin-film lithium niobate on sapphire nanowaveguide. In addition, we observe an array of desirable features including high conversion efficiencies (>50%), wide tuning ranges (>100nm), and broad spectral bandwidths (>180nm 3 dB for the 3200-nm idler). When combined with the dispersion engineering available in tightly confining nanowaveguides, this approach enables high-gain optical parametric amplifiers operating at any wavelength.

    more » « less
  3. Abstract

    Blistering is a phenomenon sometimes observed in sputtered-deposited thin films but seldom investigated in detail. Here, we consider the case of titania-doped germania (TGO)/silica multilayers deposited by ion beam sputtering. TGO is a candidate as high refractive index material in the Bragg mirrors for the next iteration of gravitational waves detectors. It needs to be annealed at 600C for 100 h in order to reach the desired relaxation state. However under some growth conditions, in 52-layer TGO/silica stacks, blistering occurs upon annealing at a temperature near 500C, which corresponds to the temperature where Ar desorbs from TGO. In order to better understand the blistering phenomenon, we measure the Ar transport in single layers of TGO and silica. In the case of<1µm-thick TGO layers, the Ar desorption is mainly limited by detrapping. The transport model also correctly predicts the evolution of the total amount of Ar in a 8.5µm stack of TGO and silica layers annealed at 450C, but in that case, the process is mainly limited by diffusion. Since Ar diffusion is an order of magnitude slower in TGO compared to silica, we observe a correspondingly strong accumulation of Ar in TGO. The Ar transport model is used to explain some regimes of the blisters growth, and we find indications that Ar accumulation is a driver for their growth in general, but the blisters nucleation remains a complex phenomenon influenced by several other factors including stress, substrate roughness, and impurities.

    more » « less
  4. Mid-infrared spectroscopy, an important technique for sensing molecules, has encountered barriers from sources either limited in tuning range or excessively bulky for widespread use. We present a compact, efficient, and broadly tunable optical parametric oscillator surmounting these challenges. Leveraging dispersion-engineered thin-film lithium niobate-on-sapphire photonics and a singly resonant cavity allows broad, controlled tuning over an octave from 1.5–3.3 µm. The device generates >25mW of mid-infrared light at 3.2 µm with 15% conversion efficiency. The ability to precisely control the device’s mid-infrared emission enables spectroscopy of methane and ammonia, demonstrating our approach’s relevance for sensing. Our work signifies an important advance in nonlinear photonics miniaturization, bringing practical field applications of high-speed, broadband mid-infrared spectroscopy closer to reality.

    more » « less
  5. Free, publicly-accessible full text available January 1, 2025
  6. Abstract

    The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

    more » « less
  7. Synchronously pumped optical parametric oscillators (OPOs) are highly efficient sources of long-wavelength pulses and nonclassical light, making them invaluable for applications in spectroscopy, metrology, multi-photon microscopy, and quantum computation. Typical systems based on free-space cavities either operate non-degenerately, which limits their efficiency, or use active feedback control to achieve degenerate operation, which limits these systems to dedicated low-noise environments. In this work, we demonstrate a femtosecond monolithically integrated OPO. In contrast with bulk OPOs, our monolithic 10 GHz cavity, based on reverse-proton-exchanged lithium niobate, operates stably without active locking. By detuning the repetition rate of the free-running pump laser from the cavity free spectral range, we control the intracavity pulse dynamics and observe many of the operating regimes previously encountered in free-space degenerate OPOs, such as box-pulsing and quadratic bright-dark solitons (simultons), in addition to non-degenerate operation. When operated in the simulton regime and pumped with 125 fs pulses at 1 µm, this monolithic OPO chip outputs broadband sech2pulses (63 nm, 3 dB) with tens of milliwatts of average power.

    more » « less
  8. Abstract

    Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.

    more » « less
  9. High-gain optical parametric amplification is an important nonlinear process used both as a source of coherent infrared light and as a source of nonclassical light. In this work, we experimentally demonstrate an approach to optical parametric amplification that enables extremely large parametric gains with low energy requirements. In conventional nonlinear media driven by femtosecond pulses, multiple dispersion orders limit the effective interaction length available for parametric amplification. Here, we use the dispersion engineering available in periodically poled thin-film lithium niobate nanowaveguides to eliminate several dispersion orders at once. The result is a quasi-static process; the large peak intensity associated with a short pump pulse can provide gain to signal photons without undergoing pulse distortion or temporal walk-off. We characterize the parametric gain available in these waveguides using optical parametric generation, where vacuum fluctuations are amplified to macroscopic intensities. In the unsaturated regime, we observe parametric gains as large as 71 dB (118 dB/cm) spanning 1700–2700 nm with pump energies of only 4 pJ. When driven with pulse energies><#comment/>10pJ, we observe saturated parametric gains as large as 88 dB (><#comment/>146dB/cm). The devices shown here achieve saturated optical parametric generation with orders of magnitude less pulse energy than previous techniques.

    more » « less