Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2plume predictions near, and far away, from the monitoring wells.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Free, publicly-accessible full text available July 14, 2024
-
Free, publicly-accessible full text available September 1, 2024
-
Modern-day reservoir management and monitoring of geologic carbon storage increasingly call for costly time-lapse seismic data collection. We demonstrate how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic data. Based on midpoint-offset-domain connectivity arguments, our algorithm automatically produces sparse nonreplicated time-lapse acquisition geometries that favor wavefield recovery.more » « lessFree, publicly-accessible full text available July 1, 2024
-
We present the Seismic Laboratory for Imaging and Modeling/Monitoring open-source software framework for computational geophysics and, more generally, inverse problems involving the wave equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integrating multiple layers of abstraction, the software is designed to be both readable and scalable, allowing researchers to easily formulate problems in an abstract fashion while exploiting the latest developments in high-performance computing. The design principles and their benefits are illustrated and demonstrated by means of building a scalable prototype for permeability inversion from time-lapse crosswell seismic data, which, aside from coupling of wave physics and multiphase flow, involves machine learning.more » « lessFree, publicly-accessible full text available July 1, 2024
-
Free, publicly-accessible full text available April 1, 2024
-
Geologic carbon storage represents one of the few truly scalable technologies capable of reducing the CO 2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO 2 remains within the storage complex. Among the different monitoring modalities, seismic imaging stands out due to its ability to attain high-resolution and high-fidelity images. However, these superior features come at prohibitive costs and time-intensive efforts that potentially render extensive seismic monitoring undesirable. To overcome this shortcoming, we present a methodology in which time-lapse images are created by inverting nonreplicated time-lapse monitoring data jointly. By no longer insisting on replication of the surveys to obtain high-fidelity time-lapse images and differences, extreme costs and time-consuming labor are averted. To demonstrate our approach, hundreds of realistic synthetic noisy time-lapse seismic data sets are simulated that contain imprints of regular CO 2 plumes and irregular plumes that leak. These time-lapse data sets are subsequently inverted to produce time-lapse difference images that are used to train a deep neural classifier. The testing results show that the classifier is capable of detecting CO 2 leakage automatically on unseen data with reasonable accuracy. We consider the use of this classifier as a first step in the development of an automatic workflow designed to handle the large number of continuously monitored CO 2 injection sites needed to help combat climate change.more » « lessFree, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available August 1, 2024