skip to main content


Search for: All records

Creators/Authors contains: "Feng, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. We report the implementation of a fully on-chip, lensless microscopy technique termed optofluidic ptychography. This imaging modality complements the miniaturization provided by microfluidics and allows the integration of ptychographic microscopy into various lab-on-a-chip devices. In our prototype, we place a microfluidic channel on the top surface of a coverslip and coat the bottom surface with a scattering layer. The channel and the coated coverslip substrate are then placed on top of an image sensor for diffraction data acquisition. Similar to the operation of a flow cytometer, the device utilizes microfluidic flow to deliver specimens across the channel. The diffracted light from the flowing objects is modulated by the scattering layer and recorded by the image sensor for ptychographic reconstruction, where high-resolution quantitative complex images are recovered from the diffraction measurements. By using an image sensor with a 1.85 μm pixel size, our device can resolve the 550 nm linewidth on the resolution target. We validate the device by imaging different types of biospecimens, including C. elegans , yeast cells, paramecium , and closterium sp . We also demonstrate a high-resolution ptychographic reconstruction at a video framerate of 30 frames per second. The reported technique can address a wide range of biomedical needs and engenders new ptychographic imaging innovations in a flow cytometer configuration. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Functional understanding of visceral afferents is important for developing the new treatment to visceral hypersensitivity and pain. The sparse distribution of visceral afferents in dorsal root ganglia (DRGs) has challenged conventional electrophysiological recordings. Alternatively, Ca 2+ indicators like GCaMP6f allow functional characterization by optical recordings. Here we report a turnkey microscopy system that enables simultaneous Ca 2+ imaging at two parallel focal planes from intact DRG. By using consumer-grade optical components, the microscopy system is cost-effective and can be made broadly available without loss of capacity. It records low-intensity fluorescent signals at a wide field of view (1.9 × 1.3 mm) to cover a whole mouse DRG, with a high pixel resolution of 0.7 micron/pixel, a fast frame rate of 50 frames/sec, and the capability of remote focusing without perturbing the sample. The wide scanning range (100 mm) of the motorized sample stage allows convenient recordings of multiple DRGs in thoracic, lumbar, and sacral vertebrae. As a demonstration, we characterized mechanical neural encoding of visceral afferents innervating distal colon and rectum (colorectum) in GCaMP6f mice driven by VGLUT2 promotor. A post-processing routine is developed for conducting unsupervised detection of visceral afferent responses from GCaMP6f recordings, which also compensates the motion artifacts caused by mechanical stimulation of the colorectum. The reported system offers a cost-effective solution for high-throughput recordings of visceral afferent activities from a large volume of DRG tissues. We anticipate a wide application of this microscopy system to expedite our functional understanding of visceral innervations. 
    more » « less