- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Mingzhen (3)
-
Takamura, Yayoi (3)
-
Chiu, I-Ting (2)
-
Mehta, Apurva (2)
-
Sasaki, Dayne Y. (2)
-
Shafer, Padraic (2)
-
Ahlm, Nolan (1)
-
Ahlm, Nolan J. (1)
-
Hong, Seung_Sae (1)
-
Kane, Alexander M. (1)
-
Klewe, Christoph (1)
-
N'Diaye, Alpha T. (1)
-
N’Diaye, Alpha T. (1)
-
Shih, Hudson (1)
-
Zhou, Jieyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Solid phase epitaxy (SPE) has been widely employed for various thin-film materials, making it valuable for industrial applications due to its scalability. In complex oxides, SPE has been limited to a few materials because of the challenges in maintaining stoichiometric control during growth, particularly when volatile phases are present at high temperatures. Here, we investigate the impact of encapsulation layers on the SPE of complex oxides, using SrRuO3 (SRO) as a model system. An amorphous SRO layer was deposited on a SrTiO3 (STO) substrate, followed by the transfer of a single-crystalline STO membrane as an encapsulation layer in order to suppress the evaporation of volatile species (RuO2) during the SPE process. Whereas both encapsulated and unencapsulated SRO layers were successfully crystallized, the unencapsulated films suffered a substantial loss of Ru ions—exceeding 20%—compared to their encapsulated counterparts. This loss of Ru ions led to a loss of metallicity in the unencapsulated SRO layers, whereas the encapsulated layers retained their metallic ferromagnetic properties. This study demonstrates that the encapsulation provided by oxide membranes effectively suppresses stoichiometric loss during SPE, presenting a new strategy in stabilizing a broader class of functional oxides as epitaxial thin films.more » « less
-
Feng, Mingzhen; Ahlm, Nolan J.; Kane, Alexander M.; Chiu, I-Ting; Sasaki, Dayne Y.; Shafer, Padraic; N'Diaye, Alpha T.; Mehta, Apurva; Takamura, Yayoi (, Journal of Applied Physics)Magnetic properties and interfacial phenomena of epitaxial perovskite oxides depend sensitively on parameters such as film thickness and strain state. In this work, epitaxial La 0.67 Sr 0.33 CoO 3 (LSCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) bilayers were grown on NdGaO 3 (NGO) and LaAlO 3 (LAO) substrates with a fixed LSMO thickness of 6 nm, and LSCO thickness (t LSCO ) varying from 2 to 10 nm. Soft x-ray magnetic spectroscopy revealed that magnetically active Co 2+ ions that strongly coupled to the LSMO layer were observed below a critical t LSCO for bilayers grown on both substrates. On LAO substrates, this critical thickness was 2 nm, above which the formation of Co 2+ ions was quickly suppressed leaving only a soft LSCO layer with mixed valence Co 3+ /Co 4+ ions. The magnetic properties of both LSCO and LSMO layers displayed strong t LSCO dependence. This critical t LSCO increased to 4 nm on NGO substrates, and the magnetic properties of only the LSCO layer displayed t LSCO dependence. A non-magnetic layer characterized by Co 3+ ions and with a thickness below 2 nm exists at the LSCO/substrate interface for both substrates. The results contribute to the understanding of interfacial exchange spring behavior needed for applications in next generation spintronic and magnetic memory devices.more » « less
-
Feng, Mingzhen; Ahlm, Nolan; Sasaki, Dayne Y.; Chiu, I-Ting; N’Diaye, Alpha T.; Shafer, Padraic; Klewe, Christoph; Mehta, Apurva; Takamura, Yayoi (, ACS Applied Materials & Interfaces)
An official website of the United States government
