Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Abstract We use the Very Energetic Radiation Imaging telescope Array System (VERITAS) imaging air Cherenkov telescope array to obtain the first measured angular diameter of
β UMa at visual wavelengths using stellar intensity interferometry (SII) and independently constrain the limb-darkened angular diameter. The age of the Ursa Major moving group has been assessed from the ages of its members, including nuclear member Merak (β UMa), an A1-type subgiant, by comparing effective temperature and luminosity constraints to model stellar evolution tracks. Previous interferometric limb-darkened angular-diameter measurements ofβ UMa in the near-infrared (Center for High Angular Resolution Astronomy (CHARA) Array, 1.149 ± 0.014 mas) and mid-infrared (Keck Nuller, 1.08 ± 0.07 mas), together with the measured parallax and bolometric flux, have constrained the effective temperature. This paper presents current VERITAS-SII observation and analysis procedures to derive squared visibilities from correlation functions. We fit the resulting squared visibilities to find a limb-darkened angular diameter of 1.07 ± 0.04 (stat) ± 0.05 (sys) mas, using synthetic visibilities from a stellar atmosphere model that provides a good match to the spectrum ofβ UMa in the optical wave band. The VERITAS-SII limb-darkened angular diameter yields an effective temperature of 9700 ± 200 ± 200 K, consistent with ultraviolet spectrophotometry, and an age of 390 ± 29 ± 32 Myr, using MESA Isochrones and Stellar Tracks. This age is consistent with 408 ± 6 Myr from the CHARA Array angular diameter.Free, publicly-accessible full text available April 26, 2025 -
Abstract In 2017 February, the blazar OJ 287 underwent a period of intense multiwavelength activity. It reached a new historic peak in the soft X-ray (0.3–10 keV) band, as measured by the Swift X-ray Telescope. This event coincides with a very-high-energy (VHE)
γ -ray outburst that led VERITAS to detect emission above 100 GeV, with a detection significance of 10σ (from 2016 December 9 to 2017 March 31). The time-averaged VHEγ -ray spectrum was consistent with a soft power law (Γ = −3.81 ± 0.26) and an integral flux corresponding to ∼2.4% that of the Crab Nebula above the same energy. Contemporaneous data from multiple instruments across the electromagnetic spectrum reveal a complex flaring behavior, primarily in the soft X-ray and VHE bands. To investigate the possible origin of such an event, our study focuses on three distinct activity states: before, during, and after the 2017 February peak. The spectral energy distributions during these periods suggest the presence of at least two nonthermal emission zones, with the more compact one responsible for the observed flare. Broadband modeling results and observations of a new radio knot in the jet of OJ 287 in 2017 are consistent with a flare originating from a strong recollimation shock outside the radio core. -
Abstract G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (
E γ > 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (E γ > 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWNB -field (B ∼ 3μ G) and larger distance (d ∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.Free, publicly-accessible full text available December 27, 2024 -
Abstract This paper investigates the origin of the
γ -ray emission from MGRO J1908+06 in the GeV–TeV energy band. By analyzing the data collected by the Fermi Large Area Telescope, the Very Energetic Radiation Imaging Telescope Array System, and High Altitude Water Cherenkov, with the addition of spectral data previously reported by LHAASO, a multiwavelength study of the morphological and spectral features of MGRO J1908+06 provides insight into the origin of theγ -ray emission. The mechanism behind the bright TeV emission is studied by constraining the magnetic field strength, the source age, and the distance through detailed broadband modeling. Both spectral shape and energy-dependent morphology support the scenario that inverse Compton emission of an evolved pulsar wind nebula associated with PSR J1907+0602 is responsible for the MGRO J1908+06γ -ray emission with a best-fit true age ofT = 22 ± 9 kyr and a magnetic field ofB = 5.4 ± 0.8μ G, assuming the distance to the pulsard PSR= 3.2 kpc. -
Abstract Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲ M χ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; M χ ≳ 100 TeV) has been suggested as an underexplored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS γ -ray observatory. With 216 hr of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ -ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle.more » « less