skip to main content


Search for: All records

Creators/Authors contains: "Feng, Zhenxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-efficiency and low-cost catalysts for the oxygen evolution reaction (OER) in acidic electrolytes are critical for electrochemical water splitting in proton exchange membrane (PEM) electrolyzers to produce green hydrogen, a clean fuel for sustainable energy conversion and storage. Among OER catalysts, solid-state synthesized SrCo1−xIrxO3 has demonstrated superior activity compared to commercial standards, such as IrO2 and RuO2. However, the solid-state synthesis process is economically inefficient for industrial use due to the potential for impurities and low yield of the final product. In addition, the requirement for electrochemical cycling to activate the catalyst introduces contaminations and uncertainties for industrial applications. In this study, a modified solution-based sol–gel method was employed to produce SrCo0.5Ir0.5O3 (SCIO) with high purity and yield. Subsequent ball milling and acid leaching treatments were applied, resulting in a catalyst with higher efficiency than those activated solely by electrochemical cycling. The electrochemical analysis and physical characterizations of our SCIO catalyst after ex-situ post-synthesis treatments show a similar active phase in composition and structure to those obtained through in situ electrochemical cycling and activation. Our approach simplifies the preparation process, making the catalyst ready for direct use in PEM electrolyzers without further treatment, offering a promising solution for producing high-performance, industrial-scale OER catalysts.

     
    more » « less
  2. It is generally known that the incorporation of crystals in the glass matrix can enhance the ductility of metallic glasses (MGs), at the expense of reduced strength, and that the deformation of MGs, particularly during shear banding, can induce crystal formation/growth. Here, we show that these known trends for the interplay between crystals and deformation of MGs may hold true or become inverted depending on the size of the crystals relative to the shear bands. We performed molecular dynamics simulations of tensile tests on nanocrystal-bearing MGs. When the crystals are relatively small, they bolster the strength rather than the ductility of MGs, and the crystals within a shear band undergo redissolution as the shear band propagates. In contrast, larger crystals tend to enhance ductility at the cost of strength, and the crystal volume fraction increases during deformation. These insights offer a more comprehensive understanding of the intricate relationship between deformation and crystals/crystallization in MGs, useful for fine-tuning the structure and mechanical properties of both MGs and MG–crystal composites.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. Abstract

    High‐efficiency and low‐cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1‐xSyelectrocatalysts to investigate the intricate restructuring processes. Surface‐sensitive X‐ray photoelectron spectroscopy and bulk‐sensitive X‐ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal‐free OER electrocatalysts through a doping‐regulated restructuring approach.

     
    more » « less
    Free, publicly-accessible full text available June 7, 2025
  4. Microfluidics, involving chemical or physical phenomena at the submillimeter length scale under continuous flow, allows the controlled reaction, assembly, and exfoliation of nanomaterials by adjusting the momentum, heat, and mass transfer.

     
    more » « less
  5. Aqueous sodium-ion batteries (ASIBs) represent a promising battery technology for stationary energy storage, due to their attractive merits of low cost, high abundance, and inherent safety. Recently, a variety of advanced cathode, anode, and electrolyte materials have been developed for ASIBs, which not only enhance our fundamental understanding of the Na insertion mechanism, but also facilitate the research and development of practical ASIB systems. Among these electrode materials, iron-based materials are of particular importance because of the high abundance, low price, and low toxicity of Fe elements. However, to our knowledge, there are no review papers that specifically discuss the properties of Fe-based materials for ASIBs yet. In this review, we present the recent research progress on Fe-based cathode/anode materials, which include polyanionic compounds, Prussian blue, oxides, carbides, and selenides. We also discuss the research efforts to build Fe-based ASIB full cells. Lastly, we share our perspectives on the key challenges that need to be addressed and suggest alternative directions for aqueous Na-ion batteries. We hope this review paper can promote more research efforts on the development of low-cost and low-toxicity materials for aqueous battery applications. 
    more » « less
  6. In the Mn3O4electrode, chloride ions are reversibly converted into atomic chlorine species. Trapped Zn2+cations aid in stabilizing these chlorine atoms in polychloride species.

     
    more » « less