A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract − 1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level.Free, publicly-accessible full text available October 1, 2024 -
A bstract A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb
− 1at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z′ boson couplings to a bb quark pair (g b), an sb quark pair (g bδ bs), and any same-flavor charged lepton (g ℓ ) or neutrino pair (g ν ), with|g ν | =|g ℓ | . For a Z′ boson with a mass = 350 GeV (2 TeV) and$$ {m}_{{\textrm{Z}}^{\prime }} $$ |δ bs| < 0.25, the majority of the parameter space with 0.0057 <|g ℓ | < 0.35 (0.25 <|g ℓ | < 0.43) and 0.0079 < |g b | < 0.46 (0.34 < |g b | < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z′ model with parameters consistent with low-energy b → sℓℓ measurements. In this scenario, most of the allowed parameter space is excluded for a Z′ boson with 350 < < 500 GeV, while the constraints are less stringent for higher$$ {m}_{{\textrm{Z}}^{\prime }} $$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.$$ {m}_{{\textrm{Z}}^{\prime }} $$ Free, publicly-accessible full text available October 1, 2024 -
A bstract The second-order (
v 2) and third-order (v 3) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/ ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb− 1recorded with the CMS detector. The J/ ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. Thev 2andv 3coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measuredv 2values for prompt J/ ψ mesons are found to be larger than those for nonprompt J/ ψ mesons. The prompt J/ ψv 2values at highp Tare found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/ ψ mesonv 3and prompt ψ(2S)v 2andv 3values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.Free, publicly-accessible full text available October 1, 2024 -
Abstract A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at
by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$ . The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {fb}^{-1}$$ Higgs boson to invisible particles,$$\,\text {Ge}\hspace{-.08em}\text {V}$$ , is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ searches carried out at$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ , 8, and 13$${\sqrt{s}=7}$$ in complementary production modes. The combined upper limit at 95% confidence level on$$\,\text {Te}\hspace{-.08em}\text {V}$$ is 0.15 (0.08 expected).$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ Free, publicly-accessible full text available October 1, 2024 -
A bstract A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb
− 1of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ( ) pair, or a light-flavor quark-antiquark ($$ \textrm{t}\overline{\textrm{t}} $$ ) pair and a virtual or on-shell W boson. The main backgrounds,$$ \textrm{q}\overline{\textrm{q}} $$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a$$ \textrm{t}\overline{\textrm{t}} $$ pair (a$$ \textrm{t}\overline{\textrm{t}} $$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.$$ \textrm{q}\overline{\textrm{q}} $$ -
A bstract A search for a charged Higgs boson H
± decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016–2018 at = 13 TeV, corresponding to an integrated luminosity of 138 fb$$ \sqrt{s} $$ − 1. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H± in the mass range of 300–700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H± mass of 300 Ge V to 0.019 pb for a mass of 700 GeV. These are the first limits on H± production in the H± → HW± decay channel at the LHC. -
A bstract A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κ T = 0 . 25 and a relative decay width Γ /M T′ < 5%.more » « less
-
A bstract The first measurement of the top quark pair ( $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) production cross section in proton-proton collisions at $$ \sqrt{s} $$ s = 13 . 6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1 . 21 fb − 1 , are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of $$ {924}_{-40}^{+32} $$ 924 − 40 + 32 pb.more » « less
-
A bstract A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb − 1 . The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of t -channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t -channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.more » « less