skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Fernandez-Serra, Marivi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Density functional theory (DFT) is the standard formalism to study the electronic structure of matter at the atomic scale. In Kohn–Sham DFT simulations, the balance between accuracy and computational cost depends on the choice of exchange and correlation functional, which only exists in approximate form. Here, we propose a framework to create density functionals using supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to lift the accuracy of baseline functionals towards that provided by more accurate methods while maintaining their efficiency. We show that the functionals learn a meaningful representation of the physical information contained in the training data, making them transferable across systems. A NeuralXC functional optimized for water outperforms other methods characterizing bond breaking and excels when comparing against experimental results. This work demonstrates that NeuralXC is a first step towards the design of a universal, highly accurate functional valid for both molecules and solids.

     
    more » « less