skip to main content

Search for: All records

Creators/Authors contains: "Fernando, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the absence of drugs and vaccines, policymakers use non-pharmaceutical interventions such as social distancing to decrease rates of disease-causing contact, with the aim of reducing or delaying the epidemic peak. These measures carry social and economic costs, so societies may be unable to maintain them for more than a short period of time. Intervention policy design often relies on numerical simulations of epidemic models, but comparing policies and assessing their robustness demands clear principles that apply across strategies. Here we derive the theoretically optimal strategy for using a time-limited intervention to reduce the peak prevalence of a novelmore »disease in the classic Susceptible-Infectious-Recovered epidemic model. We show that broad classes of easier-to-implement strategies can perform nearly as well as the theoretically optimal strategy. But neither the optimal strategy nor any of these near-optimal strategies is robust to implementation error: small errors in timing the intervention produce large increases in peak prevalence. Our results reveal fundamental principles of non-pharmaceutical disease control and expose their potential fragility. For robust control, an intervention must be strong, early, and ideally sustained.

    « less
  2. Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hours at 10C and 40% RH, but ~1.5 hours at 27C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases withmore »increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission.« less