skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fidler, Ashley P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C–H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C–H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry. 
    more » « less
  2. null (Ed.)
    Abstract The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4 d −1 6 p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl. 
    more » « less