skip to main content


Search for: All records

Creators/Authors contains: "Field, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Our work seeks to understand the global demographical response of bat species to the climate change that occurred at the Last Glacial Maximum (LGM).

    Location

    All continents except Antarctica.

    Methods

    MitochondrialDNAsequences were sampled from bat species throughout the planet where we could associate a georeferenced sample with a givenDNAsequence. Our investigation estimates the historical demographical response using over 12,000 samples from >300 nominal species of bats. CustomPythonand R scripts were written to aggregate sequence data from GenBank, locality information fromGBIF, and to associate these records to individual samples. We conducted approximate Bayesian computation to calculate the posterior probability of demographical bottleneck and expansion responses to the end of the Pleistocene, and then collected organismal trait data to identify traits that were associated with either demographical response. We also used R to estimate current and end‐Pleistocene species distribution models (SDM) for species where >10 georeferenced samples were available.

    Results

    Analysis of the genetic data indicate that some temperate insectivores responded to the end of the Pleistocene by undergoing a demographical expansion. However, the neotropical family Phyllostomidae experienced the most dramatic response, with many of its species undergoing demographical bottlenecks. Larger bats, and those with shorter forewings, were more likely to undergo a demographical bottleneck. In contrast with the results of the genetic data analysis, the automated SDMs all predicted range expansion since the LGM.

    Main conclusions

    Historical populations of Neotropical bats that rely on Angiosperms for resources (i.e., pollen, nectar, fruit) were negatively influenced by the climate change that occurred at the end of the Pleistocene. Our work highlights the utility of incorporating exploratory trait‐based analyses in phylogeography. It serves as an example of automated big data phylogeography, and suggests that repurposed data can lead to new insights about global biodiversity.

     
    more » « less