skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Field, Robert D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In eastern Canada, Black spruce (Picea marianaMill. B.S.P.) grows in a wide variety of climates, from maritime-oceanic conditions near the Labrador Sea, to more continental climates, inland. Along this gradient, timing and provenance of heat and moisture that support growth are uncertain, weakening our capacity to predict the response of boreal ecosystems to climate variability. Here, we measured the stable oxygen isotopic composition of black spruce tree-ring cellulose at three sites in eastern Canada and provide evidence of a rapid decrease of Labrador Sea’s influence on adjacent ecosystems. Our results report a landwards decrease in the oxygen isotope composition of both tree-ring cellulose (δ18OTRC) and precipitation water (δ18Op). We also reveal a rapid landwards decoupling betweenδ18OTRCvariability (1950-2013), maximum temperature and Sea Surface Temperature variations over the Northwest Atlantic. Thus, despite their apparent ecological homogeneity, eastern Canada’s black spruce ecosystems rely on heterogeneous sources of heat and moisture. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025