We present a novel analytic framework to model the steady-state structure of multiphase galactic winds comprised of a hot, volume-filling component and a cold, clumpy component. We first derive general expressions for the structure of the hot phase for arbitrary mass, momentum, and energy source terms. Next, informed by recent simulations, we parameterize the cloud–wind mass transfer rates, which are set by the competition between turbulent mixing and radiative cooling. This enables us to cast the cloud–wind interaction as a source term for the hot phase and thereby simultaneously solve for the evolution of both phases, fully accounting for their bidirectional influence. With this model, we explore the nature of galactic winds over a broad range of conditions. We find that (i) with realistic parameter choices, we naturally produce a hot, low-density wind that transports energy while entraining a significant flux of cold clouds, (ii) mixing dominates the cold cloud acceleration and decelerates the hot wind, (iii) during mixing thermalization of relative kinetic energy provides significant heating, (iv) systems with low hot phase mass loading factors and/or star formation rates can sustain higher initial cold phase mass loading factors, but the clouds are quickly shredded, and (v) systems withmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract We introduce a simple entropy-based formalism to characterize the role of mixing in pressure-balanced multiphase clouds and demonstrate example applications using
enzo-e (magneto)hydrodynamic simulations. Under this formalism, the high-dimensional description of the system’s state at a given time is simplified to the joint distribution of mass over pressure (P ) and entropy (K =P ρ −γ ). As a result, this approach provides a way to (empirically and analytically) quantify the impact of different initial conditions and sets of physics on the system evolution. We find that mixing predominantly alters the distribution along theK direction and illustrate how the formalism can be used to model mixing and cooling for fluid elements originating in the cloud. We further confirm and generalize a previously suggested criterion for cloud growth in the presence of radiative cooling and demonstrate that the shape of the cooling curve, particularly at the low-temperature end, can play an important role in controlling condensation. Moreover, we discuss the capacity of our approach to generalize such a criterion to apply to additional sets of physics and to build intuition for the impact of subtle higher-order effects not directly addressed by the criterion. -
Abstract We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-
b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Ovi absorption features and broader Siiii absorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates thatmore » -
Abstract We compare an analytic model for the evolution of supernova-driven superbubbles with observations of local and high-redshift galaxies, and the properties of intact H
i shells in local star-forming galaxies. Our model correctly predicts the presence of superwinds in local star-forming galaxies (e.g., NGC 253) and the ubiquity of outflows nearz ∼ 2. We find that high-redshift galaxies may “capture” 20%–50% of their feedback momentum in the dense ISM (with the remainder escaping into the nearby CGM), whereas local galaxies may contain ≲10% of their feedback momentum from the central starburst. Using azimuthally averaged galaxy properties, we predict that most superbubbles stall and fragmentwithin the ISM, and that this occurs at, or near, the gas scale height. We find a consistent interpretation in the observed Hi bubble radii and velocities, and predict that most will fragment within the ISM, and that those able to break out originate from short dynamical time regions (where the dynamical time is shorter than feedback timescales). Additionally, we demonstrate that models with constant star cluster formation efficiency per Toomre mass are inconsistent with the occurrence of outflows from high-z starbursts and local circumnuclear regions. -
We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstratesmore »
-
ABSTRACT We use FIRE simulations to study disc formation in z ∼ 0, Milky Way-mass galaxies, and conclude that a key ingredient for the formation of thin stellar discs is the ability for accreting gas to develop an aligned angular momentum distribution via internal cancellation prior to joining the galaxy. Among galaxies with a high fraction ($\gt 70{{\ \rm per\ cent}}$) of their young stars in a thin disc (h/R ∼ 0.1), we find that: (i) hot, virial-temperature gas dominates the inflowing gas mass on halo scales (≳20 kpc), with radiative losses offset by compression heating; (ii) this hot accretion proceeds until angular momentum support slows inward motion, at which point the gas cools to $\lesssim 10^4\, {\rm K}$; (iii) prior to cooling, the accreting gas develops an angular momentum distribution that is aligned with the galaxy disc, and while cooling transitions from a quasi-spherical spatial configuration to a more-flattened, disc-like configuration. We show that the existence of this ‘rotating cooling flow’ accretion mode is strongly correlated with the fraction of stars forming in a thin disc, using a sample of 17 z ∼ 0 galaxies spanning a halo mass range of 1010.5 M⊙ ≲ Mh ≲ 1012 M⊙ and stellarmore »
-
ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we seemore »