Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Live (not decayed) radioisotopes on the Earth and Moon are messengers from recent nearby astrophysical explosions. Measurements of60Fe in deep-sea samples, Antarctic snow, and lunar regolith reveal two pulses about 3 Myr and 7 Myr ago. Detection of244Pu in a deep-sea crust indicates a recent r-process event. We review the ultrasensitive accelerator mass spectrometry techniques that enable these findings. We then explore the implications for astrophysics, including supernova nucleosynthesis, particularly the r-process, as well as supernova dust production and the formation of the Local Bubble that envelops the Solar System. The implications go beyond nuclear physics and astrophysics to include studies of heliophysics, astrobiology, geology, and evolutionary biology.more » « less
-
Abstract Binary neutron star mergers produce high-energy emissions from several physically different sources, including a gamma-ray burst (GRB) and its afterglow, a kilonova (KN), and, at late times, a remnant many parsecs in size. Ionizing radiation from these sources can be dangerous for life on Earth-like planets when located too close. Work to date has explored the substantial danger posed by the GRB to on-axis observers; here we focus instead on the potential threats posed to nearby off-axis observers. Our analysis is based largely on observations of the GW170817/GRB 170817A multi-messenger event, as well as theoretical predictions. For baseline KN parameters, we find that the X-ray emission from the afterglow may be lethal out to ∼1 pc and the off-axis gamma-ray emission may threaten a range out to ∼4 pc, whereas the greatest threat comes years after the explosion, from the cosmic rays accelerated by the KN blast, which can be lethal out to distances up to ∼11 pc. The distances quoted here are typical, but the values have significant uncertainties and depend on the viewing angle, ejected mass, and explosion energy in ways we quantify. Assessing the overall threat to Earth-like planets, KNe have a similar kill distance to supernovae, but are far less common. However, our results rely on the scant available KN data, and multi-messenger observations will clarify the danger posed by such events.more » « less
-
Abstract There is a wealth of data on live, undecayed60Fe (t1/2= 2.6 Myr) in deep-sea deposits, the lunar regolith, cosmic rays, and Antarctic snow, which is interpreted as originating from the recent explosions of at least two near-Earth supernovae. We use the60Fe profiles in deep-sea sediments to estimate the timescale of supernova debris deposition beginning ∼3 Myr ago. The available data admits a variety of different profile functions, but in all cases the best-fit60Fe pulse durations are >1.6 Myr when all the data is combined. This timescale far exceeds the ≲0.1 Myr pulse that would be expected if60Fe was entrained in the supernova blast wave plasma. We interpret the long signal duration as evidence that60Fe arrives in the form of supernova dust, whose dynamics are separate from but coupled to the evolution of the blast plasma. In this framework, the >1.6 Myr is that for dust stopping due to drag forces. This scenario is consistent with the simulations in Fry et al. (2020), where the dust is magnetically trapped in supernova remnants and thereby confined around regions of the remnant dominated by supernova ejects, where magnetic fields are low. This picture fits naturally with models of cosmic-ray injection of refractory elements as sputtered supernova dust grains and implies that the recent60Fe detections in cosmic rays complement the fragments of grains that survived to arrive on the Earth and Moon. Finally, we present possible tests for this scenario.more » « less
-
Abstract The widespread detection of 60 Fe in geological and lunar archives provides compelling evidence for recent nearby supernova explosions within ∼100 pc at 3 and 7 Myr ago. The blasts from these explosions had a profound effect on the heliosphere. We perform new calculations to study the compression of the heliosphere due to a supernova blast. Assuming a steady but non-isotropic solar wind, we explore a range of properties appropriate for supernova distances inspired by recent 60 Fe data, and for a 20 pc supernova proposed to account for mass extinctions at the end-Devonian period. We examine the locations of the termination shock decelerating the solar wind and the heliopause that marks the boundary between the solar wind and supernova material. Pressure balance scaling holds, consistent with studies of other astrospheres. Solar wind anisotropy does not have an appreciable effect on shock geometry. We find that supernova explosions at 50 pc (95 pc) lead to heliopause locations at 16 au (23 au) when the forward shock arrives. Thus, the outer solar system was directly exposed to the blast, but the inner planets—including Earth—were not. This finding reaffirms that the delivery of supernova material to Earth is not from the blast plasma itself, but likely is from supernova dust grains. After the arrival of the forward shock, the weakening supernova blast will lead to a gradual rebound of the heliosphere, taking ∼few × 100 kyr to expand beyond 100 au. Prospects for future work are discussed.more » « less
-
Abstract The spectacular outbursts of energy associated with supernovae (SNe) have long motivated research into their potentially hazardous effects on Earth and analogous environments. Much of this research has focused primarily on the atmospheric damage associated with the prompt arrival of ionizing photons within days or months of the initial outburst, and the high-energy cosmic rays that arrive thousands of years after the explosion. In this study, we turn the focus to persistent X-ray emission, arising in certain SNe that have interactions with a dense circumstellar medium and observed months and/or years after the initial outburst. The sustained high X-ray luminosity leads to large doses of ionizing radiation out to formidable distances. We assess the threat posed by these X-ray-luminous SNe for Earth-like planetary atmospheres; our results are rooted in the X-ray SN observations from Chandra, Swift-XRT, XMM-Newton, NuSTAR, and others. We find that this threat is particularly acute for SNe showing evidence of strong circumstellar interaction, such as Type IIn explosions, which have significantly larger ranges of influence than previously expected and lethal consequences up to ∼50 pc away. Furthermore, X-ray-bright SNe could pose a substantial and distinct threat to terrestrial biospheres and tighten the Galactic habitable zone. We urge follow-up X-ray observations of interacting SNe for months and years after the explosion to shed light on the physical nature and full-time evolution of the emission and to clarify the danger that these events pose for life in our galaxy and other star-forming regions.more » « less
-
Abstract 244Pu has recently been discovered in deep-sea deposits spanning the past 10 Myr, a period that includes two60Fe pulses from nearby supernovae.244Pu is among the heaviestr-process products, and we consider whether it was created in supernovae, which is disfavored by nucleosynthesis simulations, or in an earlier kilonova event that seeded the nearby interstellar medium with244Pu that was subsequently swept up by the supernova debris. We discuss how these possibilities can be probed by measuring244Pu and otherr-process radioisotopes such as129I and182Hf, both in lunar regolith samples returned to Earth by missions such as Chang’e and Artemis, and in deep-sea deposits.more » « less
-
ABSTRACT Recent studies have shown that live (not decayed) radioactive 60Fe is present in deep-ocean samples, Antarctic snow, lunar regolith, and cosmic rays. 60Fe represents supernova (SN) ejecta deposited in the Solar system around $$3 \, \rm Myr$$ ago, and recently an earlier pulse $${\approx}7 \ \rm Myr$$ ago has been found. These data point to one or multiple near-Earth SN explosions that presumably participated in the formation of the Local Bubble. We explore this theory using 3D high-resolution smooth-particle hydrodynamical simulations of isolated SNe with ejecta tracers in a uniform interstellar medium (ISM). The simulation allows us to trace the SN ejecta in gas form and those eject in dust grains that are entrained with the gas. We consider two cases of diffused ejecta: when the ejecta are well-mixed in the shock and when they are not. In the latter case, we find that these ejecta remain far behind the forward shock, limiting the distance to which entrained ejecta can be delivered to ≈100 pc in an ISM with $$n_\mathrm{H}=0.1\,\, \rm cm^{-3}$$ mean hydrogen density. We show that the intensity and the duration of 60Fe accretion depend on the ISM density and the trajectory of the Solar system. Furthermore, we show the possibility of reproducing the two observed peaks in 60Fe concentration with this model by assuming two linear trajectories for the Solar system with 30-km s−1 velocity. The fact that we can reproduce the two observed peaks further supports the theory that the 60Fe signal was originated from near-Earth SNe.more » « less
-
Abstract The astrophysical sites where r -process elements are synthesized remain mysterious: it is clear that neutron star mergers (kilonovae (KNe)) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r -process species. The discovery of 60 Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth within the last few million years, probably SNe. Intriguingly, 244 Pu has now been detected, mostly overlapping with 60 Fe pulses. However, the 244 Pu flux may extend to before 12 Myr ago, pointing to a different origin. Motivated by these observations and difficulties for r -process nucleosynthesis in SN models, we propose that ejecta from a KN enriched the giant molecular cloud that gave rise to the Local Bubble, where the Sun resides. Accelerator mass spectrometry (AMS) measurements of 244 Pu and searches for other live isotopes could probe the origins of the r -process and the history of the solar neighborhood, including triggers for mass extinctions, e.g., that at the end of the Devonian epoch, motivating the calculations of the abundances of live r -process radioisotopes produced in SNe and KNe that we present here. Given the presence of 244 Pu, other r -process species such as 93 Zr, 107 Pd, 129 I, 135 Cs, 182 Hf, 236 U, 237 Np, and 247 Cm should be present. Their abundances and well-resolved time histories could distinguish between the SN and KN scenarios, and we discuss prospects for their detection in deep-ocean deposits and the lunar regolith. We show that AMS 129 I measurements in Fe–Mn crusts already constrain a possible nearby KN scenario.more » « less