skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Filchagin, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article reports on the inclusive production cross section of several quarkonium states, $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , $$\Upsilon \mathrm{(2S)}$$ Υ ( 2 S ) , and $$\Upsilon \mathrm{(3S)}$$ Υ ( 3 S ) , measured with the ALICE detector at the LHC, in pp collisions at $$\sqrt{s} = 5.02$$ s = 5.02  TeV. The analysis is performed in the dimuon decay channel at forward rapidity ( $$2.5< y < 4$$ 2.5 < y < 4 ). The integrated cross sections and transverse-momentum ( $$p_{\textrm{T}}$$ p T ) and rapidity ( $$y$$ y ) differential cross sections for $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , and the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) -to- $$\textrm{J}/\psi $$ J / ψ cross section ratios are presented. The integrated cross sections, assuming unpolarized quarkonia, are: $$\sigma _{\textrm{J}/\psi }$$ σ J / ψ  ( $$p_{\textrm{T}} <20$$ p T < 20  GeV/c) = 5.88 ± 0.03 ± 0.34 $$ ~\mu $$ μ b, $$\sigma _{\psi \mathrm{(2S)}}$$ σ ψ ( 2 S )  ( $$p_{\textrm{T}} <12$$ p T < 12  GeV/c) = 0.87 ± 0.06 ± 0.10 $$~\mu $$ μ b, $$\sigma _{\Upsilon \mathrm (1S)}$$ σ Υ ( 1 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 45.5 ± 3.9 ± 3.5 nb, $$\sigma _{\Upsilon \mathrm{(2S)}}$$ σ Υ ( 2 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 22.4 ± 3.2 ± 2.7 nb, and $$\sigma _{\Upsilon \mathrm{(3S)}}$$ σ Υ ( 3 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 4.9 ± 2.2 ± 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. For the first time, the cross sections of the three $$\Upsilon $$ Υ states, as well as the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) one as a function of $$p_{\textrm{T}}$$ p T and $$y$$ y , are measured at $$\sqrt{s} = 5.02$$ s = 5.02  TeV at forward rapidity. These measurements also significantly extend the $$\textrm{J}/\psi $$ J / ψ $$p_{\textrm{T}}$$ p T reach and supersede previously published results. A comparison with ALICE measurements in pp collisions at $$\sqrt{s} = 2.76$$ s = 2.76 , 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models. 
    more » « less
  2. A bstract The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p-Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at $$ \sqrt{s} $$ s = 13 TeV and in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8 . 16 TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used. 
    more » « less
  3. Abstract In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) 1 . These partons subsequently emit further partons in a process that can be described as a parton shower 2 , which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m Q and energy E , within a cone of angular size m Q / E around the emitter 3 . Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques 4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics. 
    more » « less