skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Finerty, Genevieve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the amount of space required by animals to fulfill their biological needs is essential for comprehending their behavior, their ecological role within their community, and for effective conservation planning and resource management. The space-use patterns of habituated primates often are studied by using handheld GPS devices, which provide detailed movement information that can link patterns of ranging and space-use to the behavioral decisions that generate these patterns. However, these data may not accurately represent an animal’s total movements, posing challenges when the desired inference is at the home range scale. To address this problem, we used a 13-year dataset from 11 groups of white-faced capuchins (Cebus capucinus imitator) to examine the impact of sampling elements, such as sample size, regularity, and temporal coverage, on home range estimation accuracy. We found that accurate home range estimation is feasible with relatively small absolute sample sizes and irregular sampling, as long as the data are collected over extended time periods. Also, concentrated sampling can lead to bias and overconfidence due to uncaptured variations in space use and underlying movement behaviors. Sampling protocols relying on handheld GPS for home range estimation are improved by maximizing independent location data distributed across time periods much longer than the target species’ home range crossing timescale.

     
    more » « less