skip to main content

Search for: All records

Creators/Authors contains: "Finkelstein, Steven L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is a large-volume spectroscopic survey without preselection of sources, searching ∼540 deg2for Lyαemitting galaxies (LAEs) at 1.9 <z< 3.5. Taking advantage of such a wide-volume survey, we perform a pilot study using early HETDEX data to search for lensed Lyαemitters (LAEs). After performing a proof of concept using a previously known lensed LAE covered by HETDEX, we perform a search for previously unknown lensed LAEs in the HETDEX spectroscopic sample. We present a catalog of 26 potential LAEs lensed by foreground, red, non-star-forming galaxies atz∼ 0.4–0.7. We estimate the magnification for each candidate system, finding 12 candidates to be within the strong lensing regime (magnificationμ> 2). Follow-up observations of these potential lensed LAEs have the potential to confirm their lensed nature and explore these distant galaxies in more detail.

  2. Abstract

    We report an active galactic nucleus (AGN) with an extremely high equivalent width (EW), EWLyα+N V,rest≳921Å, in the rest frame, atz∼ 2.24 in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX), as a representative case of the high-EW AGN population. The continuum level is a nondetection in the HETDEX spectrum; thus the measured EW is a lower limit. The source is detected with significant emission lines (>7σ) at Lyα+ Nvλ1241, Civλ1549, and a moderate emission line (∼4σ) at Heiiλ1640 within the wavelength coverage of HETDEX (3500–5500 Å). Ther-band magnitude is 24.57 from the Hyper Suprime-Cam-HETDEX joint survey with a detection limit ofr= 25.12 at 5σ. The Lyαemission line spans a clearly resolved region of ∼10″ (85 kpc) in diameter. The Lyαline profile is strongly double peaked. The spectral decomposed blue gas and red gas Lyαemission are separated by ∼1.″2 (10.1 kpc) with a line-of-sight velocity offset of ∼1100 km s−1. This source is probably an obscured AGN with powerful winds.

  3. Abstract We present the first active galactic nuclei (AGN) catalog of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) observed between 2017 January and 2020 June. HETDEX is an ongoing spectroscopic survey (3500–5500 Å) with no target preselection based on magnitudes, colors or morphologies, enabling us to select AGN based solely on their spectral features. Both luminous quasars and low-luminosity Seyferts are found in our catalog. AGN candidates are selected with at least two significant AGN emission lines, such as the Ly α and C iv λ 1549 line pair, or with a single broad emission line with FWHM > 1000 km s −1 . Each source is further confirmed by visual inspections. This catalog contains 5322 AGN, covering an effective sky coverage of 30.61 deg 2 . A total of 3733 of these AGN have secure redshifts, and we provide redshift estimates for the remaining 1589 single broad-line AGN with no crossmatched spectral redshifts from the Sloan Digital Sky Survey Data Release 14 of QSOs. The redshift range of the AGN catalog is 0.25 < z < 4.32, with a median of z = 2.1. The bolometric luminosity range is 10 9 –10 14 L ☉ with a medianmore »of 10 12 L ☉ . The median r -band magnitude of our AGN catalog is 21.6 mag, with 34% having r > 22.5, and 2.6% reaching the detection limit at r ∼ 26 mag of the deepest imaging surveys we searched. We also provide a composite spectrum of the AGN sample covering 700–4400 Å.« less
    Free, publicly-accessible full text available July 21, 2023
  4. Abstract

    We present the Lyαemission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 <z< 3.53, covering an effective area of 30.61 deg2. Approximately 2.6% of the HETDEX AGN are not detected at >5σconfidence atr∼ 26 in the deepestr-band images we have searched. The Lyαline luminosity ranges from ∼1042.3to 1045.9erg s−1. Our LyαLF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest atLLyα=1043.4erg s−1. We explore the evolution of the AGN LF over a broader redshift range (0.8 <z< 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (M1450) fromM1450∼ −18 to −27.5. We divide the sample into three redshift bins (z∼ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at themore »turnover luminosityM1450*with opposite slopes on the bright end and the faint end. TheM1450LFs in the three redshift bins can be well fit with a luminosity evolution and density evolution model: the turnover luminosity (M1450*) increases, and the turnover density (Φ*) decreases with increasing redshift.

    « less
  5. Abstract We use Paschen- β (Pa β ; 1282 nm) observations from the Hubble Space Telescope G141 grism to study the star formation and dust-attenuation properties of a sample of 29 low-redshift ( z < 0.287) galaxies in the CANDELS Ly α Emission at Reionization survey. We first compare the nebular attenuation from Pa β /H α with the stellar attenuation inferred from the spectral energy distribution, finding that the galaxies in our sample are consistent with an average ratio of the continuum attenuation to the nebular gas of 0.44, but with a large amount of excess scatter beyond the observational uncertainties. Much of this scatter is linked to a large variation between the nebular dust attenuation as measured by (space-based) Pa β to (ground-based) H α to that from (ground-based) H α /H β . This implies there are important differences between attenuation measured from grism-based/wide-aperture Pa β fluxes and the ground-based/slit-measured Balmer decrement. We next compare star formation rates (SFRs) from Pa β to those from dust-corrected UV. We perform a survival analysis to infer a census of Pa β emission implied by both detections and nondetections. We find evidence that galaxies with lower stellar mass have moremore »scatter in their ratio of Pa β to attenuation-corrected UV SFRs. When considering our Pa β detection limits, this observation supports the idea that lower-mass galaxies experience “burstier” star formation histories. Together, these results show that Pa β is a valuable tracer of a galaxy’s SFR, probing different timescales of star formation and potentially revealing star formation that is otherwise missed by UV and optical tracers.« less
    Free, publicly-accessible full text available April 1, 2023
  6. Abstract

    Using spatially resolved Hαemission line maps of star-forming galaxies, we study the spatial distribution of star formation over a wide range in redshift (0.5 ≲z≲ 1.7). Ourz∼ 0.5 measurements come from deep Hubble Space Telescope (HST) Wide Field Camera 3 G102 grism spectroscopy obtained as part of the CANDELS LyαEmission at Reionization Experiment. For star-forming galaxies with log(M*/M) ≥ 8.96, the mean Hαeffective radius is 1.2 ± 0.1 times larger than that of the stellar continuum, implying inside-out growth via star formation. This measurement agrees within 1σwith those measured atz∼ 1 andz∼ 1.7 from the 3D-HST and KMOS3Dsurveys, respectively, implying no redshift evolution. However, we observe redshift evolution in the stellar mass surface density within 1 kpc (Σ1kpc). Star-forming galaxies atz∼ 0.5 with a stellar mass of log(M*/M) = 9.5 have a ratio of Σ1kpcin Hαrelative to their stellar continuum that is lower by (19 ± 2)% compared toz∼ 1 galaxies. Σ1kpc,Hα1kpc,Contdecreases toward higher stellar masses. The majority of the redshift evolution in Σ1kpc,Hα1kpc,Contversus stellar mass stems from the fact that log(Σ1kpc,Hα) declines twice as much as log(Σ1kpc,Cont) fromz∼ 1 to 0.5 (at a fixed stellar mass of log(M*/M) = 9.5). By comparing our results to the TNG50 cosmologicalmore »magneto-hydrodynamical simulation, we rule out dust as the driver of this evolution. Our results are consistent with inside-out quenching following in the wake of inside-out growth, the former of which drives the significant drop in Σ1kpc,Hαfromz∼ 1 toz∼ 0.5.

    « less
  7. Abstract

    We present extended Lyαemission out to 800 kpc of 1034 [Oiii]-selected galaxies at redshifts 1.9 <z< 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyαemission of the [Oiii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) atr> 40 kpc from the galaxy centers. The surface brightness in the inner parts (r< 10 kpc) around the [Oiii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyαhalos are not produced in the central galaxies but originate outside of them.

  8. Abstract

    We present the results from a spectroscopic survey using the MOSFIRE near-infrared spectrograph on the 10 m Keck telescope to search for Lyαemission from candidate galaxies atz∼ 9–10 in four of the CANDELS fields (GOODS-N, EGS, UDS, and COSMOS). We observed 11 target galaxies, detecting Lyαfrom one object in ∼8.1 hr of integration, atz= 8.665 ± 0.001 with an integrated signal-to-noise ratio > 7. This galaxy is in the CANDELS Extended Groth Strip (EGS) field and lies physically close (3.5 physical Mpc [pMpc]) to another confirmed galaxy in this field with Lyαdetected atz= 8.683. The detection of Lyαsuggests the existence of large (∼1 pMpc) ionized bubbles fairly early in the reionization process. We explore the ionizing output needed to create bubbles of this size at this epoch and find that such a bubble requires more than the ionizing power provided by the full expected population of galaxies (by integrating the UV luminosity function down toMUV= −13). The Lyαwe detect would be able to escape the predominantly neutral intergalactic medium at this epoch if our detected galaxy is inhabiting an overdensity, which would be consistent with the photometric overdensity previously identified in this region by Finkelstein et al. This impliesmore »that the CANDELS EGS field is hosting an overdensity atz= 8.7 that is powering one or more ionized bubbles, a hypothesis that will be imminently testable with forthcoming James Webb Space Telescope observations in this field.

    « less
  9. Abstract

    We present the results of a stellar population analysis of 72 Lyα-emitting galaxies (LAEs) in GOODS-N at 1.9 <z< 3.5 spectroscopically identified by the Hobby−Eberly Telescope Dark Energy Experiment (HETDEX). We provide a method for connecting emission-line detections from the blind spectroscopic survey to imaging counterparts, a crucial tool needed as HETDEX builds a massive database of ∼1 million Lyαdetections. Using photometric data spanning as many as 11 filters covering 0.4 <λ(μm) < 4.5 from the Hubble Space Telescope and Spitzer Space Telescope, we study the objects’ global properties and explore which properties impact the strength of Lyαemission. We measure a median stellar mass of0.80.5+2.9×109Mand conclude that the physical properties of HETDEX spectroscopically selected LAEs are comparable to LAEs selected by previous deep narrowband studies. We find that stellar mass and star formation rate correlate strongly with the Lyαequivalent width. We then use a known sample ofz> 7 LAEs to perform a protostudy of predicting Lyαemission from galaxies in the epoch of reionization, finding agreement at the 1σlevel between prediction and observation for the majority of strong emitters.

  10. Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Ly α Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient ( dZ / dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M * / M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observedmore »weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.« less