Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Excess non-point nutrient loading continues to impair urban surface waters. Because of the potential contribution of tree litterfall to nutrient pollution in stormwater, street sweeping is a promising management tool for reducing eutrophication in urban and suburban regions. However, nutrient concentrations and loads of material removed through street sweeping have not been well characterized, impeding the development of pollution reduction credits and improvement of models for stormwater management. We evaluated the role of canopy cover over streets, street sweeper type, season, and sweeping frequency in contributing to variation in concentrations and loads of nitrogen (N), phosphorus (P), and solids recovered in street sweepings, using analyses of samples collected during regular street sweeping operations in five cities in the Minneapolis-St. Paul Metropolitan Area, Minnesota, USA. We expected that nutrient concentrations and loads would be highest in seasons and places of higher tree litterfall. We also expected that regenerative-air sweepers would recover higher loads compared to mechanical broom sweepers. Total N and P concentrations in sweepings increased most strongly with canopy cover in June, October, and November. Total N and P recovered in street sweepings similarly increased with canopy cover in June, October, and November, and peaked in early summer and autumn, times of high litterfall. In contrast, total dry mass in sweepings was greatest in early spring, following winter snowmelt. However, nutrient loads and concentrations did not differ between sweeper types. Our results add to growing evidence of the importance of street trees in contributing nutrient pollution to urban surface waters. Street sweeping focused on high-canopy streets during early summer and autumn is likely an effective management tool for stormwater nutrient pollution.more » « less
-
Agriculture’s global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture’s environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change–reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.more » « lessFree, publicly-accessible full text available September 6, 2025
-
Managed stormwater ponds are abundant in urban landscapes in much of the world, performing vital but under-studied functions for attenuation of urban runoff and nutrient pollution. Water quality improvements are widely assumed to arise from settling of nutrients and other contaminants bound to particulates, with less consideration of hydrological and biogeochemical processes. To inform improved management of ponds for nutrient retention, we studied three mature urban detention ponds in the Twin Cities, MN, USA using continuous monitoring of pond hydrology and concentrations of nitrogen and phosphorus, coupled with periodic measurement of physiochemical conditions in the ponds. Across the three sites, annual nutrient retention was high for both nitrogen (>58%) and phosphorus (>48%) despite expectations of poor performance for phosphorus due to old age and internal loading linked to hypolimnetic anoxia. Both annual and event-scale analyses suggested strong hydrologic controls on nutrient retention, with retention for individual storm events strongly regulated by antecedent pond storage capacity. Events with net nutrient export occurred primarily due to low volume retention rather than relatively high outflow concentrations. Together these results suggest that understanding and improving pond hydrologic function is crucial to improving managed stormwater pond performance for meeting downstream water quality goals.more » « less
-
Abstract Understanding the drivers of food chain length in natural communities has intrigued ecologists since Elton publicized “food cycles” in the early 20th century. Proposed drivers of food chain length have included productivity, disturbance regime, ecosystem size, and trophic omnivory. However, current theories have largely assumed simple, two‐dimensional habitat architectures and may not be adequate to predict food chain length in ecosystems with a complex, branching structure. Here, we develop a spatially explicit theoretical model that provides an integrated framework for understanding variation in food chain length in branching networks. We show independent, positive influences of ecosystem size and complexity (as indicated by branching properties) on food chain length. However, the effects of ecosystem size and complexity were contingent upon other factors, appearing more clearly in high‐disturbance and high‐productivity regimes. Our results suggest that ecosystem complexity is an important yet overlooked driver of food chain length that may increase the resilience to anthropogenic environmental changes.
-
Imbalanced anthropogenic inputs of nitrogen (N) and phosphorus (P) have significantly increased the ratio between N and P globally, degrading ecosystem productivity and environmental quality. Lakes represent a large global nutrient sink, modifying the flow of N and P in the environment. It remains unknown, however, the relative retention of these two nutrients in global lakes and their role in the imbalance of the nutrient cycles. Here we compare the ratio between P and N in inflows and outflows of more than 5,000 lakes globally using a combination of nutrient budget model and generalized linear model. We show that over 80% of global lakes positively retain both N and P, and almost 90% of the lakes show preferential retention of P. The greater retention of P over N leads to a strong elevation in the ratios between N and P in the lake outflow, exacerbating the imbalance of N and P cycles unexpectedly and potentially leading to biodiversity losses within lakes and algal blooms in downstream N-limited coastal zones. The management of N or P in controlling lake eutrophication has long been debated. Our results suggest that eutrophication management that prioritizes the reduction of P in lakes—which causes a further decrease in P in outflows—may unintentionally aggravate N/P imbalances in global ecosystems. Our results also highlight the importance of nutrient retention stoichiometry in global lake management to benefit watershed and regional biogeochemical cycles.more » « less
-
Abstract River networks regulate carbon and nutrient exchange between continents, atmosphere, and oceans. However, contributions of riverine processing are poorly constrained at continental scales. Scaling relationships of cumulative biogeochemical function with watershed size (allometric scaling) provide an approach for quantifying the contributions of fluvial networks in the Earth system. Here we show that allometric scaling of cumulative riverine function with watershed area ranges from linear to superlinear, with scaling exponents constrained by network shape, hydrological conditions, and biogeochemical process rates. Allometric scaling is superlinear for processes that are largely independent of substrate concentration (e.g., gross primary production) due to superlinear scaling of river network surface area with watershed area. Allometric scaling for typically substrate-limited processes (e.g., denitrification) is linear in river networks with high biogeochemical activity or low river discharge but becomes increasingly superlinear under lower biogeochemical activity or high discharge, conditions that are widely prevalent in river networks. The frequent occurrence of superlinear scaling indicates that biogeochemical activity in large rivers contributes disproportionately to the function of river networks in the Earth system.
-
Lakes are classified by thermal mixing regimes, with shallow waterbodies historically categorized as continuously mixing systems. Yet, recent studies demonstrate extended summertime stratification in ponds, underscoring the need to reassess thermal classifications for shallow waterbodies. In this study, we examined the summertime thermal dynamics of 34 ponds and shallow lakes across temperate North America and Europe to categorize and identify the drivers of different mixing regimes. We identified three mixing regimes: rarely (n = 18), intermittently (n = 10), and often (n = 6) mixed, where waterbodies mixed an average of 2%, 26%, and 75% of the study period, respectively. Waterbodies in the often mixed category were larger (≥4.17 ha) and stratification weakened with increased wind shear stress, characteristic of “shallow lakes.” In contrast, smaller waterbodies, or “ponds,” mixed less frequently, and stratification strengthened with increased shortwave radiation. Shallow ponds (<0.74 m) mixed intermittently, with daytime stratification often breaking down overnight due to convective cooling. Ponds ≥0.74 m deep were rarely or never mixed, likely due to limited wind energy relative to the larger density gradients associated with slightly deeper water columns. Precipitation events weakened stratification, even causing short‐term mixing (hours to days) in some sites. By examining a broad set of shallow waterbodies, we show that mixing regimes are highly sensitive to very small differences in size and depth, with potential implications for ecological and biogeochemical processes. Ultimately, we propose a new framework to characterize the variable mixing regimes of ponds and shallow lakes.more » « less
-
Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels. Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.