skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Finlayson-Pitts, Barbara_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract RationaleContaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence ofN‐methyl‐2‐pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas‐phase amines using chemical ionization mass spectrometry. MethodsGas‐phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas‐phaseN‐methyl‐2‐pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. ResultsThis study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. ConclusionsThe use of NMP as an ionizing agent with stand‐alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines. 
    more » « less