skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Finley, Andrew O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 18, 2025
  2. Abstract

    Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.

    We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.

    We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.

    spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities.

     
    more » « less
  3. Abstract

    Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi‐species detection–nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi‐species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in thespOccupancysoftware, designed to facilitate application via an accessible, well documented, and open‐source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi‐species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation inspOccupancy, serves as a user‐friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi‐species detection–nondetection data.

     
    more » « less
  4. Abstract Aim

    Species distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks.

    Innovation

    Here we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States.

    Main conclusions

    We found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.

     
    more » « less
  5. Abstract

    A key challenge in spatial data science is the analysis for massive spatially‐referenced data sets. Such analyses often proceed from Gaussian process specifications that can produce rich and robust inference, but involve dense covariance matrices that lack computationally exploitable structures. Recent developments in spatial statistics offer a variety of massively scalable approaches. Bayesian inference and hierarchical models, in particular, have gained popularity due to their richness and flexibility in accommodating spatial processes. Our current contribution is to provide computationally efficient exact algorithms for spatial interpolation of massive data sets using scalable spatial processes. We combine low‐rank Gaussian processes with efficient sparse approximations. Following recent work by Zhang et al. (2019), we model the low‐rank process using a Gaussian predictive process (GPP) and the residual process as a sparsity‐inducing nearest‐neighbor Gaussian process (NNGP). A key contribution here is to implement these models using exact conjugate Bayesian modeling to avoid expensive iterative algorithms. Through the simulation studies, we evaluate performance of the proposed approach and the robustness of our models, especially for long range prediction. We implement our approaches for remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska.

     
    more » « less