skip to main content

Search for: All records

Creators/Authors contains: "Fiore, Cara L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sponges are the richest source of bioactive organic small molecules, referred to as natural products, in the marine environment. It is well established that laboratory culturing-resistant symbiotic bacteria residing within the eukaryotic sponge host matrix often synthesize the natural products that are detected in the sponge tissue extracts. However, the contributions of the culturing-amenable commensal bacteria that are also associated with the sponge host to the overall metabolome of the sponge holobiont are not well defined. In this study, we cultured a large library of bacteria from three marine sponges commonly found in the Florida Keys. Metabolomes of isolated bacterial strains and that of the sponge holobiont were compared using mass spectrometry to reveal minimal metabolomic overlap between commensal bacteria and the sponge hosts. We also find that the phylogenetic overlap between cultured commensal bacteria and that of the sponge microbiome is minimal. Despite these observations, the commensal bacteria were found to be a rich resource for novel natural product discovery. Mass spectrometry-based metabolomics provided structural insights into these cryptic natural products. Pedagogic innovation in the form of laboratory curricula development is described which provided undergraduate students with hands-on instruction in microbiology and natural product discovery using metabolomic data miningmore »strategies.« less
    Free, publicly-accessible full text available January 1, 2024
  2. null (Ed.)
    Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well-developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host heterotrophic feeding with photosynthate or dissolved organic carbon. We now know that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse nutritional benefits to the host sponge. Despite these advances in the field, many current hypotheses pertaining to the evolution of these interactions are overly generalized; these over-simplifications limit our understanding of the evolutionary processes shaping these symbioses and how they contribute to the ecological success of sponges on modern coral reefs. To highlight the current state of knowledge in this field, we start with seminal papers and review how contemporary work using higher resolution techniques has both complemented and challenged their early hypotheses. We outline different schools of thought by discussing evidence of symbiont contribution to both host ecological divergence and convergence, nutritional specificity and plasticity, and allopatric and sympatric speciation. Based on this synthesis, we conclude that the evolutionary pressures shaping these interactions are complex, with influences from both external (nutrient limitationmore »and competition) and internal (fitness trade-offs and evolutionary constraints) factors. We outline recent controversies pertaining to these evolutionary pressures and place our current understanding of these interactions into a broader ecological and evolutionary framework. Finally, we propose areas for future research that we believe will lead to important new developments in the field.« less
  3. Abstract

    Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral,Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge,Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed inM. cavernosa, while inX. mutathere was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation betweenmore »the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.

    « less