skip to main content

Search for: All records

Creators/Authors contains: "Fiorini, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

  2. Node-Kayles is an impartial game played on a simple graph. The Sprague-Grundy theorem states that every impartial game is associated with a nonnegative integer value called a Nimber. This paper studies the Nimber sequences of various families of graphs, including 3-paths, lattice graphs, prism graphs, chained cliques, linked cliques, linked cycles, linked diamonds, hypercubes, and generalized Petersen graphs. For most of these families, we determine an explicit formula or a recursion on their Nimber sequences.
  3. Abstract The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937 1 . Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter–antimatter asymmetry of the universe via leptogenesis 2 , the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta (0 νββ ) decay. Here we show results from the search for 0 νββ decay of 130 Te, using the latest advanced cryogenic calorimeters with the CUORE experiment 3 . CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for 0 νββ decay and set a lower bound of the process half-life as 2.2 × 10 25  years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which canmore »benefit from sustained operation of large payloads in a low-radioactivity, ultralow-temperature cryogenic environment.« less
    Free, publicly-accessible full text available April 7, 2023
  4. Abstract The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ( $$0\nu \beta \beta $$ 0 ν β β ) in the isotope $$\mathrm {^{130}Te}$$ 130 Te . In this work we present the latest results on two searches for the double beta decay (DBD) of $$\mathrm {^{130}Te}$$ 130 Te to the first $$0^{+}_2$$ 0 2 + excited state of $$\mathrm {^{130}Xe}$$ 130 Xe : the $$0\nu \beta \beta $$ 0 ν β β decay and the Standard Model-allowed two-neutrinos double beta decay ( $$2\nu \beta \beta $$ 2 ν β β ). Both searches are based on a 372.5 kg $$\times $$ × yr TeO $$_2$$ 2 exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $$\mathrm {S^{0\nu }_{1/2} = 5.6 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 0more »ν = 5.6 × 10 24 yr for the $${0\nu \beta \beta }$$ 0 ν β β decay and $$\mathrm {S^{2\nu }_{1/2} = 2.1 \times 10^{24} \, \mathrm {yr}}$$ S 1 / 2 2 ν = 2.1 × 10 24 yr for the $${2\nu \beta \beta }$$ 2 ν β β decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $$90\%$$ 90 % C.I. on the decay half lives is obtained as: $$\mathrm {(T_{1/2})^{0\nu }_{0^+_2} > 5.9 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 0 ν > 5.9 × 10 24 yr for the $$0\nu \beta \beta $$ 0 ν β β mode and $$\mathrm {(T_{1/2})^{2\nu }_{0^+_2} > 1.3 \times 10^{24} \, \mathrm {yr}}$$ ( T 1 / 2 ) 0 2 + 2 ν > 1.3 × 10 24 yr for the $$2\nu \beta \beta $$ 2 ν β β mode. These represent the most stringent limits on the DBD of $$^{130}$$ 130 Te to excited states and improve by a factor $$\sim 5$$ ∼ 5 the previous results on this process.« less
  5. Free, publicly-accessible full text available January 1, 2023