skip to main content

Search for: All records

Creators/Authors contains: "Fischer, Emily V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Previous research on the health and air quality impacts of wildfire smoke has largely focused on the impact of smoke on outdoor air quality; however, many people spend a majority of their time indoors. The quality of indoor air on smoke-impacted days is largely unknown. In this analysis, we use publicly available data from an existing large network of low-cost indoor and outdoor fine particulate matter (PM2.5) monitors to quantify the relationship between indoor and outdoor particulate air quality on smoke-impacted days in 2020 across the western United States (US). We also investigate possible regional and socioeconomic trends in this relationship for regions surrounding six major cities in the western US. We find indoor PM2.5concentrations are 82% or 4.2µg m−3(median across all western US indoor monitors for the year 2020; interquartile range, IQR: 2.0–7.2µg m−3) higher on smoke-impacted days compared to smoke-free days. Indoor/outdoor PM2.5ratios show variability by region, particularly on smoke-free days. However, we find the ratio of indoor/outdoor PM2.5is less than 1 (i.e. indoor concentrations lower than outdoor) at nearly all indoor-outdoor monitor pairs on smoke-impacted days. Although typically lower than outdoor concentrations on smoke-impacted days, we find that on heavily smoke-impacted days (outdoor PM2.5> 55µg m−3),more »indoor PM2.5concentrations can exceed the 35µg m−324 h outdoor standard set by the US Environmental Protection Agency. Further, total daily-mean indoor PM2.5concentrations increase by 2.1µg m−3with every 10µg m−3increase in daily-mean outdoor PM2.5.(median of statistically significant linear regression slopes across all western US monitor pairs; IQR: 1.0–4.3µg m−3) on smoke-impacted days. These results show that for indoor environments in the western US included in our analysis, remaining indoors during smoke events is currently an effective, but limited, strategy to reduce PM2.5exposure.

    « less
  2. Wildfire smoke contains numerous different reactive organic gases, many of which have only recently been identified and quantified. Consequently, their relative importance as an oxidant sink is poorly constrained, resulting in incomplete representation in both global chemical transport models (CTMs) and explicit chemical mechanisms. Leveraging 160 gas-phase measurements made during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) aircraft campaign, we calculate OH reactivities (OHRs) for western U.S. wildfire emissions, smoke aged >3 days, smoke-impacted and low/no smoke-impacted urban atmospheres, and the clean free troposphere. VOCs were found to account for ∼80% of the total calculated OHR in wildfire emissions, with at least half of the field VOC OHR not currently implemented for biomass burning (BB) emissions in the commonly used GEOS-Chem CTM. To improve the representation of OHR, we recommend CTMs implement furan-containing species, butadienes, and monoterpenes for BB. The Master Chemical Mechanism (MCM) was found to account for 88% of VOC OHR in wildfire emissions and captures its observed decay in the first few hours of aging, indicating that most known VOC OH sinks are included in the explicit mechanisms. We find BB smoke enhanced the average total OHR by 53% relative to themore »low/no smoke urban background, mainly due to the increase in VOCs and CO thus promoting urban ozone production. This work highlights the most important VOC species for daytime BB plume oxidation and provides a roadmap for which species should be prioritized in next-generation CTMs to better predict the downwind air quality and health impacts of BB smoke.« less
    Free, publicly-accessible full text available January 19, 2024
  3. Abstract. The impact of biomass burning (BB) on the atmospheric burden of volatile organic compounds (VOCs) is highly uncertain. Here we apply the GEOS-Chemchemical transport model (CTM) to constrain BB emissions in the western USA at ∼ 25 km resolution. Across three BB emission inventorieswidely used in CTMs, the inventory–inventory comparison suggests that the totals of 14 modeled BB VOC emissions in the western USA agree with eachother within 30 %–40 %. However, emissions for individual VOCs can differ by a factor of 1–5, driven by the regionally averaged emissionratios (ERs, reflecting both assigned ERs for specific biome and vegetation classifications) across the three inventories. We further evaluate GEOS-Chemsimulations with aircraft observations made during WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) andFIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaigns. Despite being driven by different global BBinventories or applying various injection height assumptions, the model–observation comparison suggests that GEOS-Chem simulations underpredictobserved vertical profiles by a factor of 3–7. The model shows small to no bias for most species in low-/no-smoke conditions. We thus attribute thenegative model biases mostly to underestimated BB emissions in these inventories. Tripling BB emissions in the model reproduces observed verticalprofiles for primary compounds, i.e., CO, propane, benzene, and toluene. However, it shows nomore »to less significant improvements for oxygenatedVOCs, particularly for formaldehyde, formic acid, acetic acid, and lumped ≥ C3 aldehydes, suggesting the model is missing secondarysources of these compounds in BB-impacted environments. The underestimation of primary BB emissions in inventories is likely attributable tounderpredicted amounts of effective dry matter burned, rather than errors in fire detection, injection height, or ERs, as constrained by aircraftand ground measurements. We cannot rule out potential sub-grid uncertainties (i.e., not being able to fully resolve fire plumes) in the nestedGEOS-Chem which could explain the negative model bias partially, though back-of-the-envelope calculation and evaluation using longer-term groundmeasurements help support the argument of the dry matter burned underestimation. The total ERs of the 14 BB VOCs implemented in GEOS-Chem onlyaccount for half of the total 161 measured VOCs (∼ 75 versus 150 ppb ppm−1). This reveals a significant amount of missing reactiveorganic carbon in widely used BB emission inventories. Considering both uncertainties in effective dry matter burned (× 3) and unmodeledVOCs (× 2), we infer that BB contributed to 10 % in 2019 and 45 % in 2018 (240 and 2040 Gg C) of the total VOC primaryemission flux in the western USA during these two fire seasons, compared to only 1 %–10 % in the standard GEOS-Chem.« less
    Free, publicly-accessible full text available January 1, 2024
  4. Abstract

    Wildfire smoke is frequently present over the U.S. during the agricultural growing season and will likely increase with climate change. Studies of smoke impacts have largely focused on air quality and human health; however, understanding smoke's impact on photosynthetically active radiation (PAR) is essential for predicting how smoke affects plant growth. We compare surface shortwave irradiance and diffuse fraction (DF) on smoke‐impacted and smoke‐free days from 2006 to 2020 using data from multifilter rotating shadowband radiometers at 10 U.S. Department of Agriculture UV‐B Monitoring and Research Program stations and smoke plume locations from operational satellite products. On average, 20% of growing season days are smoke‐impacted, but smoke prevalence increases over time (r = 0.60,p < 0.05). Smoke presence peaks in the mid to late growing season (i.e., July, August), particularly over the northern Rocky Mountains, Great Plains, and Midwest. We find an increase in the distribution of PAR DF on smoke‐impacted days, with larger increases at lower cloud fractions. On clear‐sky days, daily average PAR DF increases by 10 percentage points when smoke is present. Spectral analysis of clear‐sky days shows smoke increases DF (average: +45%) and decreases total irradiance (average: −6%) across all six wavelengths measured from 368 to 870 nm. Optical depthmore »measurements from ground and satellite observations both indicate that spectral DF increases and total spectral irradiance decreases with increasing smoke plume optical depth. Our analysis provides a foundation for understanding smoke's impact on PAR, which carries implications for agricultural crop productivity under a changing climate.

    « less
  5. Abstract

    An abundance of literature has examined barriers to women’s equitable representation in science, technology, engineering, and math (STEM) fields, with many studies demonstrating that STEM fields are not perceived to afford communal goals, a key component of women’s interest in future careers. Using Goal Congruity Theory as a framework, we tested the longitudinal impact of perceptions of STEM career goal affordances, personal communal and agentic goal endorsements, and their congruity on persistence in science from the second through fourth years of college among women in STEM majors in the United States. We found that women’s intent to persist in science were highest in the fall of their second year, that persistence intentions exhibited a sharp decline, and eventually leveled off by their fourth year of college. This pattern was moderated by perceptions of agentic affordances in STEM, such that women who believe that STEM careers afford the opportunity for achievement and individualism experienced smaller declines. We found that higher perceptions of communal goal affordances in STEM consistently predicted higher persistence intentions indicating women may benefit from perceptions that STEM affords communal goals. Finally, we found women with higher agentic affordances in STEM also had greater intentions to persist, andmore »this relationship was stronger for women with higher agentic goals. We conclude that because STEM fields are stereotyped as affording agentic goals, women who identify interest in a STEM major during their first years of college may be drawn to these fields for this reason and may benefit from perceptions that STEM affords agentic goals.

    « less
  6. Abstract. Light absorbing organic carbon, or brown carbon (BrC), can be a significantcontributor to the visible light absorption budget. However, the sources ofBrC and the contributions of BrC to light absorption are not wellunderstood. Biomass burning is thought to be a major source of BrC.Therefore, as part of the WE-CAN (Western Wildfire Experiment for CloudChemistry, Aerosol Absorption and Nitrogen) study, BrC absorption data werecollected on board the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130 aircraft as it intercepted smoke fromwildfires in the western US in July–August 2018. BrC absorptionmeasurements were obtained in near real-time using two techniques. The firstcoupled a particle-into-liquid sampler (PILS) with a liquid waveguidecapillary cell and a total organic carbon analyzer for measurements ofwater-soluble BrC absorption and WSOC (water-soluble organic carbon). Thesecond employed a custom-built photoacoustic aerosol absorption spectrometer(PAS) to measure total absorption at 405 and 660 nm. The PAS BrC absorption at 405 nm (PAS total Abs 405 BrC) was calculated by assuming the absorption determined by the PAS at 660 nm was equivalent to the black carbon (BC) absorption and the BC aerosol absorption Ångström exponent was 1. Data from the PILS and PAS were combined to investigate the water-soluble vs. total BrC absorption at 405 nm inmore »the various wildfire plumes sampled during WE-CAN. WSOC, PILS water-soluble Abs 405, and PAS total Abs 405 tracked each other in and out of the smoke plumes. BrC absorption was correlated with WSOC (R2 value for PAS =0.42 and PILS =0.60) and CO (carbon monoxide) (R2 value for PAS =0.76 and PILS =0.55) for all wildfires sampled. The PILS water-soluble Abs 405 was corrected for thenon-water-soluble fraction of the aerosol using the calculated UHSAS(ultra-high-sensitivity aerosol spectrometer) aerosol mass. The correctedPILS water-soluble Abs 405 showed good closure with the PAS total Abs 405BrC with a factor of ∼1.5 to 2 difference. This differencewas explained by particle vs. bulk solution absorption measured by the PASvs. PILS, respectively, and confirmed by Mie theory calculations. DuringWE-CAN, ∼ 45 % (ranging from 31 % to 65 %) of the BrCabsorption was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on firedynamics or the time since emission over 9 h.« less
  7. Wildfires are an important atmospheric source of primary organic aerosol (POA) and precursors for secondary organic aerosol (SOA) at regional and global scales. However, there are large uncertainties surrounding the emissions and physicochemical processes that control the transformation, evolution, and properties of POA and SOA in large wildfire plumes. We develop a plume version of a kinetic model to simulate the dilution, oxidation chemistry, thermodynamic properties, and microphysics of organic aerosol (OA) in wildfire smoke. The model is applied to study the in-plume OA in four large wildfire smoke plumes intercepted during an aircraft-based field campaign in summer 2018 in the western United States. Based on estimates of dilution and oxidant concentrations before the aircraft first intercepted the plumes, we simulate the OA evolution from very close to the fire to several hours downwind. Our model results and sensitivity simulations suggest that dilution-driven evaporation of POA and simultaneous photochemical production of SOA are likely to explain the observed evolution in OA mass with physical age. The model, however, substantially underestimates the change in the oxygen-to-carbon ratio of the OA compared to measurements. In addition, we show that the rapid chemical transformation within the first hour after emission is driven bymore »higher-than-ambient OH concentrations (3×10 6 -10 7 molecules cm -3 ) and the slower evolution over the next several hours is a result of lower-than-ambient OH concentrations (<10 6 molecules cm -3 ) and depleted SOA precursors. Model predictions indicate that the OA measured several hours downwind of the fire is still dominated by POA but with an SOA fraction that varies between 30% and 56% of the total OA. Semivolatile, heterocyclic, and oxygenated aromatic compounds, in that order, were found to contribute substantially (>90%) to SOA formation. Future work needs to focus on better understanding the dynamic evolution closer to the fire and resolving the rapid change in the oxidation state of OA with physical age.« less