skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fisher, Madeline_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite recent advances in breast cancer treatment, drug resistance frequently presents as a challenge, contributing to a higher risk of relapse and decreased overall survival rate. It is now generally recognized that the extracellular matrix and cellular heterogeneity of the tumor microenvironment influences the cancer cells' ultimate fate. Therefore, strategies employed to examine mechanisms of drug resistance must take microenvironmental influences, as well as genetic mutations, into account. This review discusses three‐dimensional (3D) in vitro model systems which incorporate microenvironmental influences to study mechanisms of drug resistance in breast cancer. These bioengineered models include spheroid‐based models, biomaterial‐based models such as polymeric scaffolds and hydrogels, and microfluidic chip‐based models. The advantages of these model systems over traditionally studied two‐dimensional tissue culture polystyrene are examined. Additionally, the applicability of such 3D models for studying the impact of tumor microenvironment signals on drug response and/or resistance is discussed. Finally, the potential of such models for use in the development of strategies to combat drug resistance and determine the most promising treatment regimen is explored. 
    more » « less