Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tropical forest diversity governs forest structures, compositions, and influences the ecosystem response to environmental changes. Better representation of forest diversity in ecosystem demography (ED) models within Earth system models is thus necessary to accurately capture and predict how tropical forests affect Earth system dynamics subject to climate changes. However, achieving forest coexistence in ED models is challenging due to their computational expense and limited understanding of the mechanisms governing forest functional diversity. This study applies the advanced Multi‐Objective Population‐based Parallel Local Surrogate‐assisted search (MOPLS) optimization algorithm to simultaneously calibrate ecosystem fluxes and coexistence of two physiologically distinct tropical forest species in a size‐ and age‐structured ED model with realistic representation of wood harvest. MOPLS exhibits satisfactory model performance, capturing hydrological and biogeochemical dynamics observed in Barro Colorado Island, Panama, and robustly achieving coexistence for the two representative forest species. This demonstrates its effectiveness in calibrating tropical forest coexistence. The optimal solution is applied to investigate the recovery trajectories of forest biomass after various intensities of clear‐cut deforestation. We find that a 20% selective logging can take approximately 40 years for aboveground biomass to return to the initial level. This is due to the slow recovery rate of late successional trees, which only increases by 4% over the 40‐year period. This study lays the foundation to calibrate coexistence in ED models. MOPLS can be an effective tool to help better represent tropical forest diversity in Earth system models and inform forest management practices.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Considerable interest exists in understanding how climate change affects wildfire activity. Here, we use the Community Earth System Model version 2 to show that future anthropogenic aerosol mitigation yields larger increases in fire activity in the Northern Hemisphere boreal forests, relative to a base simulation that lacks climate policy and has large increases in greenhouse gases. The enhanced fire response is related to a deeper layer of summertime soil drying, consistent with increased downwelling surface shortwave radiation and enhanced surface evapotranspiration. In contrast, soil column drying is muted under increasing greenhouse gases due to plant physiological responses to increased carbon dioxide and by enhanced melting of soil ice at a depth that increases soil liquid water. Although considerable uncertainty remains in the representation of fire processes in models, our results suggest that boreal forest fires may be more sensitive to future aerosol mitigation than to greenhouse gas–driven warming.more » « less
-
Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.more » « less
-
null (Ed.)Abstract. Land models are essential tools for understanding and predicting terrestrial processes and climate–carbon feedbacks in the Earth system, but uncertainties in their future projections are poorly understood. Improvements in physical process realism and the representation of human influence arguably make models more comparable to reality but also increase the degrees of freedom in model configuration, leading to increased parametric uncertainty in projections. In this work we design and implement a machine learning approach to globally calibrate a subset of the parameters of the Community Land Model, version 5 (CLM5) to observations of carbon and water fluxes. We focus on parameters controlling biophysical features such as surface energy balance, hydrology, and carbon uptake. We first use parameter sensitivity simulations and a combination of objective metrics including ranked global mean sensitivity to multiple output variables and non-overlapping spatial pattern responses between parameters to narrow the parameter space and determine a subset of important CLM5 biophysical parameters for further analysis. Using a perturbed parameter ensemble, we then train a series of artificial feed-forward neural networks to emulate CLM5 output given parameter values as input. We use annual mean globally aggregated spatial variability in carbon and water fluxes as our emulation and calibration targets. Validation and out-of-sample tests are used to assess the predictive skill of the networks, and we utilize permutation feature importance and partial dependence methods to better interpret the results. The trained networks are then used to estimate global optimal parameter values with greater computational efficiency than achieved by hand tuning efforts and increased spatial scale relative to previous studies optimizing at a single site. By developing this methodology, our framework can help quantify the contribution of parameter uncertainty to overall uncertainty in land model projections.more » « less
-
Abstract Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process‐based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.more » « less
-
Abstract In tropical forests, both vegetation characteristics and soil properties are important not only for controlling energy, water, and gas exchanges directly but also determining the competition among species, successional dynamics, forest structure and composition. However, the joint effects of the two factors have received limited attention in Earth system model development. Here we use a vegetation demographic model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) implemented in the Energy Exascale Earth System Model (E3SM) Land Model (ELM), ELM‐FATES, to explore how plant traits and soil properties affect tropical forest growth and composition concurrently. A large ensemble of simulations with perturbed vegetation and soil hydrological parameters is conducted at the Barro Colorado Island, Panama. The simulations are compared against observed carbon, energy, and water fluxes. We find that soil hydrological parameters, particularly the scaling exponent of the soil retention curve (Bsw), play crucial roles in controlling forest diversity, with higherBswvalues (>7) favoring late successional species in competition, and lowerBswvalues (1 ∼ 7) promoting the coexistence of early and late successional plants. Considering the additional impact of soil properties resolves a systematic bias of FATES in simulating sensible/latent heat partitioning with repercussion on water budget and plant coexistence. A greater fraction of deeper tree roots can help maintain the dry‐season soil moisture and plant gas exchange. As soil properties are as important as vegetation parameters in predicting tropical forest dynamics, more efforts are needed to improve parameterizations of soil functions and belowground processes and their interactions with aboveground vegetation dynamics.more » « less
-
Summary Deep‐water access is arguably the most effective, but under‐studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep‐water access may delay plant dehydration. Here, we tested the role of deep‐water access in enabling survival within a diverse tropical forest community in Panama using a novel data‐model approach.We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990–2015) to vapor pressure deficit, water potentials in the whole‐soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water‐access depths.Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981–2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress‐related mortality risk through deep‐water access.The role of deep‐water access in mitigating mortality of hydraulically‐vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.more » « less