- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akpa, Belinda S (1)
-
Akpa, Belinda S. (1)
-
Akwataghibe, Kelechi (1)
-
Azad, Fahim Tasneema (1)
-
Barkley, Katherine (1)
-
Bleichrodt, Amanda (1)
-
Blum, Michael J. (1)
-
Bourouiba, L. (1)
-
Bromberg, Yana (1)
-
Candan, K. Selçuk (1)
-
Chowell, Gerardo (1)
-
Clancey, Erin (1)
-
Cothran, Fawn A. (1)
-
DeWitte, Sharon N. (1)
-
English, Nolan J (1)
-
Fefferman, Nina H. (1)
-
Fernandez, Pilar (1)
-
Finnoff, David (1)
-
Flaherty, D T (1)
-
Flaherty, D. T. (1)
-
- Filter by Editor
-
-
Zhu, Xin-Guang (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhu, Xin-Guang (Ed.)Abstract Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening—as induced by two distinct chemical treatments—we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity.more » « less
-
Fefferman, Nina H.; McAlister, John S.; Akpa, Belinda S.; Akwataghibe, Kelechi; Azad, Fahim Tasneema; Barkley, Katherine; Bleichrodt, Amanda; Blum, Michael J.; Bourouiba, L.; Bromberg, Yana; et al (, Current Epidemiology Reports)Abstract Purpose of ReviewPreparing for pandemics requires a degree of interdisciplinary work that is challenging under the current paradigm. This review summarizes the challenges faced by the field of pandemic science and proposes how to address them. Recent FindingsThe structure of current siloed systems of research organizations hinders effective interdisciplinary pandemic research. Moreover, effective pandemic preparedness requires stakeholders in public policy and health to interact and integrate new findings rapidly, relying on a robust, responsive, and productive research domain. Neither of these requirements are well supported under the current system. SummaryWe propose a new paradigm for pandemic preparedness wherein interdisciplinary research and close collaboration with public policy and health practitioners can improve our ability to prevent, detect, and treat pandemics through tighter integration among domains, rapid and accurate integration, and translation of science to public policy, outreach and education, and improved venues and incentives for sustainable and robust interdisciplinary work.more » « less
An official website of the United States government
