Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report the first observation and measurement of antiproton annihilation at rest on argon track and shower multiplicities and particle identification conducted with the LArIAT experiment. Stopping antiprotons from the Fermilab Test Beam Facility’s charged particle test beam are identified using beamline instrumentation and LArIAT’s liquid argon time projection chamber (LArTPC). The charged particle multiplicity from the annihilation vertex is manually evaluated via hand scanning, yielding a mean of tracks and a standard deviation of 1.3 tracks, consistent with a semiautomated reconstruction resulting in tracks and a standard deviation of 1.2 tracks. Both methods are consistent with Monte Carlo simulations within statistical uncertainty. The shower multiplicities and particle identification for outgoing tracks are also consistent with eant4 model predictions. These results, obtained from a low-statistics sample, provide a foundation for higher-statistics studies in larger LArTPCs, which could refine modeling of intranuclear annihilation on argon and inform scenarios such as neutron-antineutron oscillations.more » « lessFree, publicly-accessible full text available May 1, 2026
-
null (Ed.)Abstract The two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties on these models, including uncertainties on multi-nucleon interactions from a newly developed procedure using NOvA near detector data.more » « less
An official website of the United States government
