skip to main content

Search for: All records

Creators/Authors contains: "Flannigan, David J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial and energy resolutions of state-of-the-art transmission electron microscopes (TEMs) have surpassed 50 pm and 5 meV. However, with respect to the time domain, even the fastest detectors combined with the brightest sources may only be able to reach the microsecond timescale. Thus, conventional methods are incapable of resolving myriad fundamental ultrafast ( i.e., attosecond to picosecond) atomic-scale dynamics. The successful demonstration of femtosecond (fs) laser-based (LB) ultrafast transmission electron microscopy (UEM) nearly 20 years ago provided a means to span this nearly 10-order-of-magnitude temporal gap. While nanometer-picosecond UEM studies of dynamics are now well established, ultrafast Å-scale imaging has gone largely unrealized. Further, while instrument development has rightly been an emphasis, and while new modalities and uses of pulsed-beam TEM continue to emerge, the overall chemical and materials application space has been only modestly explored to date. In this Perspectives article, we argue that these apparent shortfalls can be attributed to a simple lack of data and detail. We speculate that present work and continued growth of the field will ultimately lead to the realization that Å-scale fs dynamics can indeed be imaged with minimally modified UEM instrumentation and with repetition rates ( f rep ) below - andmore »perhaps even well below - 1 MHz. We further argue that use of low f rep , whether for LB UEM or for chopped/bunched beams, significantly expands the accessible application space. This calls for systematically establishing modality-specific limits so that especially promising technologies can be pursued, thus ultimately facilitating broader adoption as individual instrument capabilities expand.« less
    Free, publicly-accessible full text available October 18, 2023
  2. Free, publicly-accessible full text available August 1, 2023
  3. Though efforts to improve the temporal resolution of transmission electron microscopes (TEMs) have waxed and waned for decades, with relatively recent advances routinely reaching sub-picosecond scales, fundamental and practical challenges have hindered the advance of combined Å–fs–meV resolutions, particularly for core-loss spectroscopy and real-space imaging. This is due in no small part to the complexity of the approach required to access timescales upon which electrons, atoms, molecules, and materials first begin to respond and transform – attoseconds to picoseconds. Here we present part of a larger effort devoted to systematically mapping the instrument parameter space of a TEM modified to reach ultrafast timescales. With General Particle Tracer, we studied the statistical temporal distributions of single-electron packets as a function of various fs pulsed-laser parameters and electron-gun configurations and fields for the exact architecture and dimensions of a Thermo Fisher Tecnai Femto ultrafast electron microscope. We focused on easily-adjustable parameters, such as laser pulse duration, laser spot size, photon energy, Wehnelt aperture diameter, and photocathode size. In addition to establishing trends and dispersion behaviors, we identify regimes within which packet duration can be 100s of fs and approach the 300 fs laser limit employed here. Overall, the results provide a detailedmore »picture of the temporal behavior of single-electron packets in the Tecnai Femto gun region, forming the initial contribution of a larger effort.« less
  4. null (Ed.)
    Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scatteringmore »studies of precisely aligned, substrate-free strained regions in transmission mode.« less
  5. Femtosecond photoexcitation of semiconducting materials leads to the generation of coherent acoustic phonons (CAPs), the behaviours of which are linked to intrinsic and engineered electronic, optical and structural properties. While often studied with pump-probe spectroscopic techniques, the influence of nanoscale structure and morphology on CAP dynamics can be challenging to resolve with these all-optical methods. Here, we used ultrafast electron microscopy (UEM) to resolve variations in CAP dynamics caused by differences in the degree of crystallinity in as-prepared and annealed GaAs lamellae. Following in situ femtosecond photoexcitation, we directly imaged the generation and propagation dynamics of hypersonic CAPs in a mostly amorphous and, following an in situ photothermal anneal, a mostly crystalline lamella. Subtle differences in both the initial hypersonic velocities and the asymptotic relaxation behaviours were resolved via construction of space-time contour plots from phonon wavefronts. Comparison to bulk sound velocities in crystalline and amorphous GaAs reveals the influence of the mixed amorphous-crystalline morphology on CAP dispersion behaviours. Further, an increase in the asymptotic velocity following annealing establishes the sensitivity of quantitative UEM imaging to both structural and compositional variations through differences in bonding and elasticity. Implications of extending the methods and results reported here to elucidating correlated electronic,more »optical and structural behaviours in semiconducting materials are discussed. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function'.« less