skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fleischer, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As a result of constantly increasing data center utilization, many challenges have appeared for thermal engineers over the last few decades. Advanced cooling systems for servers are of significant interest, particularly, technologies which can also reduce electricity usage. One known technology called Organic Rankine Cycle (ORC) is considered a viable alternative for this purpose. It can both the heat from a server and then transfer the server heat into a power cycle to generate electricity. This study consists of the design and construction of an experimental prototype of 20kW of waste heat, representing two common rack servers operating at full capacity. The range of server waste heat temperatures is between 60°C to 85°C, which is far below the normal operating range for ORCs. This ultra-low-grade waste heat leads to an expected thermal efficiency between 2%-8%. Tests on the experimental rig showed a maximum thermal efficiency of 3.33%. The system is both absorbing all the waste heat from the data center and at the same time providing an economic benefit back to the data center in form of electricity. Through experimental investigation, this study provides the first evidence for using ORC system as a valid solution for ultra-low-grade waste heat recovery. 
    more » « less