skip to main content


Search for: All records

Creators/Authors contains: "Fleming, Noah and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Braverman, Mark (Ed.)
    We further the study of supercritical tradeoffs in proof and circuit complexity, which is a type of tradeoff between complexity parameters where restricting one complexity parameter forces another to exceed its worst-case upper bound. In particular, we prove a new family of supercritical tradeoffs between depth and size for Resolution, Res(k), and Cutting Planes proofs. For each of these proof systems we construct, for each c ≤ n^{1-ε}, a formula with n^{O(c)} clauses and n variables that has a proof of size n^{O(c)} but in which any proof of size no more than roughly exponential in n^{1-ε}/c must necessarily have depth ≈ n^c. By setting c = o(n^{1-ε}) we therefore obtain exponential lower bounds on proof depth; this far exceeds the trivial worst-case upper bound of n. In doing so we give a simplified proof of a supercritical depth/width tradeoff for tree-like Resolution from [Alexander A. Razborov, 2016]. Finally, we outline several conjectures that would imply similar supercritical tradeoffs between size and depth in circuit complexity via lifting theorems. 
    more » « less