We have discovered that the H
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract α emission-line star Haro 5-2, located in the 3–6 Myr old Ori OB1b association, is a young quadruple system. The system has a 2+2 configuration, with an outer separation of 2.″6 and with resolved subarcsecond inner binary components. The brightest component, Aa, dominates the A-binary; it is a weak-line T Tauri star with spectral type M2.5±1. The two stars of the B component are equally bright atJ , but the Bb star is much redder. Optical spectroscopy of the combined B pair indicates a rich emission-line spectrum with a M3±1 spectral type. The spectrum is highly variable and switches back and forth between a classical and a weak-line T Tauri star. In the near-IR, the spectrum shows Paschenβ and Brackettγ in emission, indicative of active accretion. A significant mid-IR excess reveals the presence of circumstellar or circumbinary material in the system. Most multiple systems are likely formed during the protostellar phase, involving flybys of neighboring stars followed by an inspiraling phase driven by accretion from circumbinary material and leading to compact subsystems. However, Haro 5-2 stands out among young 2+2 quadruples, as the two inner binaries are unusually wide relative to the separation of the A and B pair, allowing future studies of the individual components. Assuming the components are coeval, the system could potentially allow stringent tests of pre-main-sequence evolutionary models. -
Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034cm-2s-1was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034cm-2s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.
Free, publicly-accessible full text available May 1, 2025 -
A bstract A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb
− 1of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of theWZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.Free, publicly-accessible full text available February 1, 2025 -
Free, publicly-accessible full text available November 1, 2024
-
A bstract A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons (
e orμ ) with the same electric charge, or three leptons. The analysis uses 139 fb− 1ofpp collision data at = 13 TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without$$ \sqrt{s} $$ R -parity conservation are considered. In topologies with intermediate states including eitherWh orWZ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a naturalR -parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for anR -parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.Free, publicly-accessible full text available November 1, 2024 -
A bstract A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying
τ -leptons and missing transverse momentum is presented. The analysis uses 139 fb− 1of proton-proton collision data at = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence of physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$$ \sqrt{s} $$ a model featuring two scalar Higgs doublets and a pseudoscalar singlet field. Exclusion limits on the parameters of the model in selected benchmark scenarios are derived at 95% confidence level. Model-independent limits are also set on the visible cross-section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying intoτ -leptons.