skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores, Jose"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Structural domains and domain walls, inherent in single crystalline perovskite oxides, can significantly influence the properties of the material and therefore must be considered as a vital part of the design of the epitaxial oxide thin films. We employ 4D-STEM combined with machine learning (ML) to comprehensively characterize domain structures at both high spatial resolution and over a significant spatial extent. Using orthorhombic LaFeO3as a model system, we explore the application of unsupervised and supervised ML in domain mapping, which demonstrates robustness against experiment uncertainties. The results reveal the consequential formation of multiple domains due to the structural degeneracy when LaFeO3film is grown on cubic SrTiO3. In situ annealing of the film shows the mechanism of domain coarsening that potentially links to phase transition of LaFeO3at high temperatures. Moreover, synthesis of LaFeO3on DyScO3illustrates that a less symmetric orthorhombic substrate inhibits the formation of domain walls, thereby contributing to the mitigation of structural degeneracy. High fidelity of our approach also highlights the potential for the domain mapping of other complicated materials and thin films. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available July 1, 2025