skip to main content

Search for: All records

Creators/Authors contains: "Florian, David C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    OTTO is an open-source automated liquid handler that can be fabricated at a cost of $1,500 using off-the-shelf and 3D-printable parts as an alternative to commercial devices. Open-source approaches have been applied to build syringe pumps, centrifuges, and other laboratory equipment. These devices are affordable but generally rely on a single motor to perform simple operations and thus do not fully utilize the potential of the Maker Movement. Open-source linear actuators and microcontrollers enable the fabrication of more complex laboratory instruments that rely on 3D positioning and accurate dispensing of fluids, such as automated liquid handlers. These instruments can be built rapidly and affordably, thereby providing access to highly reproducible sample preparation for common biological assays such as qPCR. We applied the design principles of speed and accuracy, unattended automation, and open-source components to build an automated liquid handler that controls micropipetting of liquids in 3D space at speeds and positional resolutions required for qPCR. In benchmarking studies, OTTO showed accuracy and sample preparation times comparable to manual qPCR. The ability to control linear motion and liquid dispensing using affordable off-the-shelf and 3D-printable parts can facilitate the adoption of open-source automated liquid handlers for qPCR, bioplotting, and other bioinstrumentationmore »applications.

    « less
  2. Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers ( e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printedmore »molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community.« less
    Free, publicly-accessible full text available December 7, 2022