- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cimen, Furkan (1)
-
Ford, Gabriela (1)
-
Hasan, Samiul (1)
-
Kazenmayer, Leah (1)
-
Rahman, Rezaur (1)
-
Turgut, Damla (1)
-
Zhang, Jiechao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting short-term traffic volume is essential to improve transportation systems management and operations (TSMO) and the overall efficiency of traffic networks. The real-time data, collected from Internet of Things (IoT) devices, can be used to predict traffic volume. More specifically, the Automated Traffic Signal Performance Measures (ATSPM) data contain high-fidelity traffic data at multiple intersections and can reveal the spatio-temporal patterns of traffic volume for each signal. In this study, we have developed a machine learningbased approach using the data collected from ATSPM sensors of a corridor in Orlando, FL to predict future hourly traffic. The hourly predictions are calculated based on the previous six hours volume seen at the selected intersections. Additional factors that play an important role in traffic fluctuations include peak hours, day of the week, holidays, among others. Multiple machine learning models are applied to the dataset to determine the model with the best performance. Random Forest, XGBoost, and LSTM models show the best performance in predicting hourly traffic volumes.more » « less
An official website of the United States government
