Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Effective mosquito surveillance and control relies on rapid and accurate identification of mosquito vectors and confounding sympatric species. As adoption of modified mosquito (MM) control techniques has increased, the value of monitoring the success of interventions has gained recognition and has pushed the field away from traditional ‘spray and pray’ approaches. Field evaluation and monitoring of MM control techniques that target specific species require massive volumes of surveillance data involving species-level identifications. However, traditional surveillance methods remain time and labor-intensive, requiring highly trained, experienced personnel. Health districts often lack the resources needed to collect essential data, and conventional entomological species identification involves a significant learning curve to produce consistent high accuracy data. These needs led us to develop MosID: a device that allows for high-accuracy mosquito species identification to enhance capability and capacity of mosquito surveillance programs. The device features high-resolution optics and enables batch image capture and species identification of mosquito specimens using computer vision. While development is ongoing, we share an update on key metrics of the MosID system. The identification algorithm, tested internally across 16 species, achieved 98.4 ± 0.6% % macro F1-score on a dataset of known species, unknown species used in training, and species reserved for testing (species, specimens respectively: 12, 1302; 12, 603; 7, 222). Preliminary user testing showed specimens were processed with MosID at a rate ranging from 181-600 specimens per hour. We also discuss other metrics within technical scope, such as mosquito sex and fluorescence detection, that may further support MM programs.more » « less
-
Abstract With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.more » « less
An official website of the United States government
