Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Birth is an inflammatory event for the newborn, characterized by elevations in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α peripherally and/or centrally, as well as changes in brain microglia. However, the mechanism(s) underlying these responses is unknown. Toll-like receptors (TLRs) play crucial roles in innate immunity and initiate inflammatory cascades upon recognition of endogenous or exogenous antigens. Most TLR signaling depends on the adaptor molecule myeloid differentiation primary response 88 (MyD88). We independently varied MyD88 gene status in mouse dams and their offspring to determine whether the inflammatory response to birth depends on MyD88 signaling and, if so, whether that signaling occurs in the offspring, the mother, or both. We find that the perinatal surges in plasma IL-6 and brain expression of TNF-α depend solely on MyD88 gene status of the offspring, whereas postnatal increases in plasma IL-10 and TNF-α depend on MyD88 in both the pup and dam. Interestingly, MyD88 genotype of the dam primarily drives differences in offspring brain microglial density and has robust effects on developmental neuronal cell death. Milk cytokines were evaluated as a possible source of postnatal maternal influence; although we found high levels of CXCL1/GROα and several other cytokines in ingested post-partum milk, their presence did not require MyD88. Thus, the inflammatory response previously described in the late-term fetus and newborn depends on MyD88 (and, by extension, TLRs), with signaling in both the dam and offspring contributing. Unexpectedly, naturally-occuring neuronal cell death in the newborn is modulated primarily by maternal MyD88 gene status.more » « less
-
At birth, mammals experience a massive colonization by microorganisms. We previously reported that newborn mice gestated and born germ-free (GF) have increased microglial labeling and alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as greater forebrain volume and body weight when compared to conventionally colonized (CC) mice. To test whether these effects are solely due to differences in postnatal microbial exposure, or instead may be programmed
in utero , we cross-fostered GF newborns immediately after birth to CC dams (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC, GF→GF). Because key developmental events (including microglial colonization and neuronal cell death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC groups on P7, and bacterial community composition was also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain development during at least the first 7 days after birth despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered microbial environment programs neonatal brain development. -
The microbiota plays important roles in host metabolism and immunity, and its disruption affects adult brain physiology and behavior. Although such findings have been attributed to altered neurodevelopment, few studies have actually examined microbiota effects on the developing brain. This review focuses on developmental effects of the earliest exposure to microbes. At birth, the mammalian fetus enters a world teeming with microbes which colonize all body sites in contact with the environment. Bacteria reach the gut within a few hours of birth and cause a measurable response in the intestinal epithelium. In adults, the gut microbiota signals to the brain via the vagus nerve, bacterial metabolites, hormones, and immune signaling, and work in perinatal rodents is beginning to elucidate which of these signaling pathways herald the very first encounter with gut microbes in the neonate. Neural effects of the microbiota during the first few days of life include changes in neuronal cell death, microglia, and brain cytokine levels. In addition to these effects of direct exposure of the newborn to microbes, accumulating evidence points to a role for the maternal microbiota in affecting brain development via bacterial molecules and metabolites while the offspring is still in utero . Hence, perturbations to microbial exposure perinatally, such as through C-section delivery or antibiotic treatment, alter microbiota colonization and may have long-term neural consequences. The perinatal period is critical for brain development and a close look at microbiota effects during this time promises to reveal the earliest, most primary effects of the microbiota on neurodevelopment.more » « less
-
Abstract Comparative studies are a common way to address large‐scale questions in sensory biology. For studies that investigate olfactory abilities, the most commonly used metric is olfactory bulb size. However, recent work has called into question the broad‐scale use of olfactory bulb size. In this paper, we use three neuroanatomical measures with a more mechanistic link to olfactory function (number of olfactory sensory neurons (OSNs), number of mitral cells (MCs), and number of glomeruli) to ask how species with different diets may differ with respect to olfactory ability. We use phyllostomid bats as our study system because behavioral and physiological work has shown that fruit‐ and nectar‐feeding phyllostomids rely on odors for detecting, localizing, and assessing potential foods, while insect‐eating species do not. Therefore, we predicted that fruit‐ and nectar‐feeding bats would have larger numbers of these three neuroanatomical measures than insect‐eating species. In general, our results supported the predictions. We found that fruit‐eaters had greater numbers of OSNs and glomeruli than insect‐eaters, but we found no difference between groups in number of MCs. We also examined the allometric relationship between the three neuroanatomical variables and olfactory bulb volume, and we found isometry in all cases. These findings lend support to the notion that neuroanatomical measures can offer valuable insights into comparative olfactory abilities, and suggest that the size of the olfactory bulb may be an informative parameter to use at the whole‐organism level.
-
Abstract Long-standing clinical findings report a dramatic surge of vasopressin in umbilical cord blood of the human neonate, but the neural underpinnings and function(s) of this phenomenon remain obscure. We studied neural activation in perinatal mice and rats, and found that birth triggers activation of the suprachiasmatic, supraoptic, and paraventricular nuclei of the hypothalamus. This was seen whether mice were born vaginally or via Cesarean section (C-section), and when birth
timing was experimentally manipulated. Neuronal phenotyping showed that the activated neurons were predominantly vasopressinergic, and vasopressin mRNA increased fivefold in the hypothalamus during the 2–3 days before birth. Copeptin, a surrogate marker of vasopressin, was elevated 30-to 50-fold in plasma of perinatal mice, with higher levels after a vaginal than a C-section birth. We also found an acute decrease in plasma osmolality after a vaginal, but not C-section birth, suggesting that the difference in vasopressin release between birth modes is functionally meaningful. When vasopressin was administered centrally to newborns, we found an ~ 50% reduction in neuronal cell death in specific brain areas. Collectively, our results identify a conserved neuroendocrine response to birth that is sensitive to birth mode, and influences peripheral physiology and neurodevelopment. -
ABSTRACT Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase‐3 (AC3) and ionized calcium‐binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3–P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10‐P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial “inhibitor” increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753–766, 2017