skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Formen, Jeffrey_S_S_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A reaction‐based optical relay sensing strategy that enables accurate determination of the concentration and enantiomeric ratio (er) of challenging chiral alcohols exhibiting stereocenters at the α‐, β‐, γ‐ or even δ‐position or hard‐to‐detect cryptochirality arising from H/D substitution is described. This unmatched application scope is achieved with a conceptually new sensing approach by which the alcohol moiety is replaced with an optimized achiral sulfonamide chromophore to minimize the distance between the covalently attached chiroptical reporter unit and the stereogenic center in the substrate. The result is a remarkably strong, red‐shifted CD induction that increases linearly with the sampleer. The CD sensing part of the tandem assay is seamlessly coupled to a redox reaction with a quinone molecule to generate a characteristic UV response that is independent of the enantiopurity of the alcohol and thus allows determination of the total analyte concentration. The robustness and utility of the CD/UV relay are further verified by chromatography‐free asymmetric reaction analysis with small aliquots of crude product mixtures, paving the way toward high‐throughput chiral compound screening workflows which is a highly sought‐after goal in the pharmaceutical industry. 
    more » « less