Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The southern Central Andes (~25–40°S) exhibit a complex tectonic history, crucial for understanding orogenic processes in subduction-related orogens, yet debate on the timing and mechanisms of early Cenozoic topographic growth persists. We present double-dated detrital zircon U-Pb and (U-Th)/He thermochronology data from the early Oligocene–Miocene Bermejo Basin at ~30°S to investigate source unroofing during development of the High Andes. (U-Th)/He results yield dates of ca. 565–16 Ma (n = 73), with distinct detrital modes that indicate a mixing of sediment sources characterized by variable cooling and exhumation histories. We employ a novel approach for modeling detrital thermochronology data that leverages the shared basin subsidence history of multiple detrital modes to resolve provenance and source unroofing histories. Results from the lower Oligocene Vallecito Formation (northwestern Argentina) reveal that detritus was sourced from Permian–Triassic Choiyoi Group rocks that underwent rapid late Eocene cooling, indicated by short lag time (2–5 m.y.) between source cooling and deposition. Our findings are consistent with bedrock studies of Eocene exhumation in the High Andes and establish source-to-basin connectivity during this time. Other detrital modes with pre-Cenozoic cooling histories were derived from Carboniferous Elqui-Colangüil and Choiyoi Group rocks or recycled from Paleozoic basins. We propose that an early Oligocene drainage divide in the High Andes was located west of the Punilla–La Plata fault, an active thrust front at ~30°S. These findings challenge Paleogene neutral stress-state models for the Andes and underscore the importance of improved knowledge of erosion and deformation histories for refining models of Andean orogenesis.more » « lessFree, publicly-accessible full text available June 27, 2025
-
Free, publicly-accessible full text available July 25, 2025
-
Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.more » « less
-
Abstract The Andes of western Argentina record spatiotemporal variations in morphology, basin geometry, and structural style that correspond with changes in crustal inheritance and convergent margin dynamics. Above the modern Pampean flat‐slab subduction segment (27–33°S), retroarc shortening generated a fold‐thrust belt and intraforeland basement uplifts that converge north of ∼29°S, providing opportunities to explore the effects of varied deformation and subduction regimes on synorogenic sedimentation. We integrate new detrital zircon U‐Pb and apatite (U‐Th)/He analyses with sequentially restored, flexurally balanced cross sections and thermokinematic models at ∼28.5–30°S to link deformation with resulting uplift, erosion, and basin accumulation histories. Tectonic subsidence, topographic evolution, and thermochronometric cooling records point to (a) shortening and distal foreland basin accumulation at ∼18–16 Ma, (b) thrust belt migration, changes in sediment provenance, and enhanced flexural subsidence from ∼16 to 9 Ma, (c) intraforeland basement deformation, local flexure, and drainage reorganization at ∼12–7 Ma, and (d) out‐of‐sequence shortening and exhumation of foreland basin fill by ∼8–2 Ma. Thrust belt kinematics and the reactivation of basement heterogeneities strongly controlled tectonic load configurations and subsidence patterns. Geo/thermochronological data and model results resolve increased shortening and combined thrust belt and intraforeland basement loading in response to ridge collision and Neogene shallowing of the subducted oceanic slab. Finally, this study demonstrates the utility of integrated flexural thermokinematic and erosion modeling for evaluating the geometries, rates, and potential drivers of retroarc deformation and foreland basin evolution during changes in subduction.more » « less