- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Di_Plinio, Francesco (1)
-
Fragkos, Anastasios (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove that the weak- norms, and in fact the sparse -norms, of the Carleson maximal partial Fourier sum operator are as . This is an improvement on the Carleson-Hunt theorem, where the same upper bound on the growth order is obtained for the restricted weak- type norm, and which was the strongest quantitative bound prior to our result. Furthermore, our sparse -norms bound imply new and stronger results at the endpoint . In particular, we obtain that the Fourier series of functions from the weighted Arias de Reyna space , which contains the weighted Antonov space , converge almost everywhere whenever . This is an extension of the results of Antonov [Proceedings of the XXWorkshop on Function Theory (Moscow, 1995), 1996, pp. 187–196] and Arias De Reyna, where must be Lebesgue measure. The backbone of our treatment is a new, sharply quantified near- Carleson embedding theorem for the modulation-invariant wave packet transform. The proof of the Carleson embedding relies on a newly developed smooth multi-frequency decomposition which, near the endpoint , outperforms the abstract Hilbert space approach of past works, including the seminal one by Nazarov, Oberlin and Thiele [Math. Res. Lett. 17 (2010), pp. 529–545]. As a further example of application, we obtain a quantified version of the family of sparse bounds for the bilinear Hilbert transforms due to Culiuc, Ou and the first author.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
