Experimental design preserved in situ conditions to measure Higher initial Water turbidity and salinity were both positively associated with Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk to
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract is an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.Staphylococcus aureus concentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureus infections from environmental waters,S. aureus survival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureus in turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureus survival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureus was detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureus were in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureus concentrations.S. aureus persistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureus communities that may increase the risk of exposure in environmental waters.S. aureus Practitioner Points Staphylococcus aureus concentrations, survival, and persistence were assessed in environmental fresh and brackish waters.S. aureus survival.S. aureus concentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.S. aureus concentrations and persistence.S. aureus . -
Abstract Resource-constrained island populations have thrived in Hawai’i for over a millennium, but now face aggressive new challenges to fundamental resources, including the security and sustainability of water resources. Characterizing the microbial community in groundwater ecosystems is a powerful approach to infer changes from human impacts due to land management in hydrogeological complex aquifers. In this study, we investigate how geology and land management influence geochemistry, microbial diversity and metabolic functions. We sampled a total of 19 wells over 2-years across the Hualālai watershed of Kona, Hawai’i analyzing geochemistry, and microbial communities by 16S rRNA amplicon sequencing. Geochemical analysis revealed significantly higher sulfate along the northwest volcanic rift zone, and high nitrogen (N) correlated with high on-site sewage disposal systems (OSDS) density. A total of 12,973 Amplicon Sequence Variants (ASV) were identified in 220 samples, including 865 ASVs classified as putative N and sulfur (S) cyclers. The N and S cyclers were dominated by a putative S-oxidizer coupled to complete denitrification (Acinetobacter), significantly enriched up to 4-times comparatively amongst samples grouped by geochemistry. The significant presence of Acinetobacter infers the bioremediation potential of volcanic groundwater for microbial-driven coupled S-oxidation and denitrification providing an ecosystem service for island populations dependent upon groundwater aquifers.
-
Abstract Single‐celled microbial eukaryotes inhabit deep‐sea hydrothermal vent environments and play critical ecological roles in the vent‐associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically‐ and geochemically‐distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid‐Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi‐global scale, microbial eukaryotic communities at deep‐sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent‐associated strains. These findings represent a census of deep‐sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent‐associated microbial food web and the broader deep‐sea carbon cycle.