Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The seasonal timing and magnitude of photosynthesis in evergreen needleleaf forests (ENFs) has major implications for the carbon cycle and is increasingly sensitive to changing climate. Earlier spring photosynthesis can increase carbon uptake over the growing season or cause early water reserve depletion that leads to premature cessation and increased carbon loss. Determining the start and the end of the growing season in ENFs is challenging due to a lack of field measurements and difficulty in interpreting satellite data, which are impacted by snow and cloud cover, and the pervasive “greenness” of these systems. We combine continuous needle‐scale chlorophyll fluorescence measurements with tower‐based remote sensing and gross primary productivity (GPP) estimates at three ENF sites across a latitudinal gradient (Colorado, Saskatchewan, Alaska) to link physiological changes with remote sensing signals during transition seasons. We derive a theoretical framework for observations of solar‐induced chlorophyll fluorescence (SIF) and solar intensity‐normalized SIF (SIFrelative) under snow‐covered conditions, and show decreased sensitivity compared with reflectance data (~20% reduction in measured SIF vs. ~60% reduction in near‐infrared vegetation index [NIRv] under 50% snow cover). Needle‐scale fluorescence and photochemistry strongly correlated (r2 = 0.74 in Colorado, 0.70 in Alaska) and showed good agreement on the timing and magnitude of seasonal transitions. We demonstrate that this can be scaled to the site level with tower‐based estimates of LUEPand SIFrelativewhich were well correlated across all sites (r2 = 0.70 in Colorado, 0.53 in Saskatchewan, 0.49 in Alaska). These independent, temporally continuous datasets confirm an increase in physiological activity prior to snowmelt across all three evergreen forests. This suggests that data‐driven and process‐based carbon cycle models which assume negligible physiological activity prior to snowmelt are inherently flawed, and underscores the utility of SIF data for tracking phenological events. Our research probes the spectral biology of evergreen forests and highlights spectral methods that can be applied in other ecosystems.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality—reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period—we estimate a potential of 41 to 50 Mt net additional annual CO2uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.more » « less
-
Abstract Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem‐scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (Ψ EWP ), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, Ψ EWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the Ψ EWP of a Quercus‐Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue‐level technique. When community predawn leaf water potential (Ψ pd ) was above Ψ EWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψ pd fell below Ψ EWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, Ψ EWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall‐induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψ pd observations fell below Ψ EWP , the forest is commonly only 2–4 weeks of intense drought away from reaching Ψ EWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom‐up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of Ψ EWP , and species in an ecosystem require compatible leaf‐level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.more » « less
-
Abstract Robust carbon monitoring systems are needed for land managers to assess and mitigate the changing effects of ecosystem stress on western United States forests, where most aboveground carbon is stored in mountainous areas. Atmospheric carbon uptake via gross primary productivity (GPP) is an important indicator of ecosystem function and is particularly relevant to carbon monitoring systems. However, limited ground-based observations in remote areas with complex topography represent a significant challenge for tracking regional-scale GPP. Satellite observations can help bridge these monitoring gaps, but the accuracy of remote sensing methods for inferring GPP is still limited in montane evergreen needleleaf biomes, where (a) photosynthetic activity is largely decoupled from canopy structure and chlorophyll content, and (b) strong heterogeneity in phenology and atmospheric conditions is difficult to resolve in space and time. Using monthly solar-induced chlorophyll fluorescence (SIF) sampled at ∼4 km from the TROPOspheric Monitoring Instrument (TROPOMI), we show that high-resolution satellite-observed SIF followed ecological expectations of seasonal and elevational patterns of GPP across a 3000 m elevation gradient in the Sierra Nevada mountains of California. After accounting for the effects of high reflected radiance in TROPOMI SIF due to snow cover, the seasonal and elevational patterns of SIF were well correlated with GPP estimates from a machine-learning model (FLUXCOM) and a land surface model (CLM5.0-SP), outperforming other spectral vegetation indices. Differences in the seasonality of TROPOMI SIF and GPP estimates were likely attributed to misrepresentation of moisture limitation and winter photosynthetic activity in FLUXCOM and CLM5.0 respectively, as indicated by discrepancies with GPP derived from eddy covariance observations in the southern Sierra Nevada. These results suggest that satellite-observed SIF can serve as a useful diagnostic and constraint to improve upon estimates of GPP toward multiscale carbon monitoring systems in montane, evergreen conifer biomes at regional scales.more » « less
-
Abstract Remote sensing is a powerful tool for understanding and scaling measurements of plant carbon uptake via photosynthesis, gross primary productivity (GPP), across space and time. The success of remote sensing measurements can be attributed to their ability to capture valuable information on plant structure (physical) and function (physiological), both of which impact GPP. However, no single remote sensing measure provides a universal constraint on GPP and the relationships between remote sensing measurements and GPP are often site specific, thereby limiting broader usefulness and neglecting important nuances in these signals. Improvements must be made in how we connect remotely sensed measurements to GPP, particularly in boreal ecosystems which have been traditionally challenging to study with remote sensing. In this paper we improve GPP prediction by using random forest models as a quantitative framework that incorporates physical and physiological information provided by solar-induced fluorescence (SIF) and vegetation indices (VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and VIs) across two field locations at the northern and southern ends of the North American boreal forest. We find (a) remotely sensed products contain information relevant for understanding GPP dynamics, (b) random forest models capture quantitative SIF, GPP, and light availability relationships, and (c) combining SIF and VIs in a random forest model outperforms traditional parameterizations of GPP based on SIF alone. Our new method for predicting GPP based on SIF and VIs improves our ability to quantify terrestrial carbon exchange in boreal ecosystems and has the potential for applications in other biomes.more » « less
-
Abstract Vegetation water content (VWC) plays a key role in transpiration, plant mortality, and wildfire risk. Although land surface models now often contain plant hydraulics schemes, there are few direct VWC measurements to constrain these models at global scale. One proposed solution to this data gap is passive microwave remote sensing, which is sensitive to temporal changes in VWC. Here, we test that approach by using synthetic microwave observations to constrain VWC and surface soil moisture within the Climate Modeling Alliance Land model. We further investigate the possible utility of sub‐daily observations of VWC, which could be obtained through a satellite in geostationary orbit or combinations of multiple satellites. These high‐temporal‐resolution observations could allow for improved determination of ecosystem parameters, carbon and water fluxes, and subsurface hydraulics, relative to the currently available twice‐daily sun‐synchronous observational patterns. We find that incorporating observations at four different times in the diurnal cycle (such as could be available from two sun‐synchronous satellites) provides a significantly better constraint on water and carbon fluxes than twice‐daily observations do. For example, the root mean square error of projected evapotranspiration and gross primary productivity during drought periods was reduced by approximately 40%, when using four‐times‐daily relative to twice‐daily observations. Adding hourly observations of the entire diurnal cycle did not further improve the inferred parameters and fluxes. Our comparison of observational strategies may be informative in the design of future satellite missions to study plant hydraulics, as well as when using existing remotely sensed data to study vegetation water stress response.more » « less