Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The North Atlantic Current (NAC) is a major source of heat toward the subpolar gyre and northern seas. However, its variability and drivers are not well understood. Here, we evaluated 8 years of continuous daily measurements as part of the international program Overturning in the Subpolar North Atlantic Program to investigate the NAC in the Iceland Basin. We found that the NAC volume and freshwater anomaly transport and heat content (HC) were highly variable with significant variability at timescales of 16–120 days to annual. Intraseasonal to short interannual variability was associated with mesoscale and intermittent mesoscale features abundant in the region. Composites analysis revealed that strong NAC periods were associated with less eddy kinetic energy in the Iceland Basin, which was consistent with the presence of frontal‐like structures instead of eddy‐like structures. On longer timescales, the westward migration of the eastern boundary of the subpolar North Atlantic (SPNA) gyre favors a stronger NAC volume transport and HC in the region. Stronger zonal wind stress triggers a fast response that piles water up between the SPNA and subtropical gyres, which increases the sea surface height gradient and drives the acceleration of the NAC. The strengthening of the NAC increases the heat and salt transport northward. During our study period, both heat and salt increased across the moorings. These observations are important for understanding the heat and freshwater variability in the SPNA, which ultimately impacts the Atlantic meridional overturning circulation.more » « less
-
Abstract Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.more » « less
-
Abstract A realistic numerical model was constructed to simulate the oceanic conditions and circulation in a large southeast Greenland fjord (Kangerdlugssuaq) and the adjacent shelf sea region during winter 2007–2008. The major outlet glaciers in this region recently destabilized, contributing to sea level rise and ocean freshening, with increased oceanic heating a probable trigger. It is not apparent a priori whether the fjord dynamics will be influenced by rotational effects, as the fjord width is comparable to the internal Rossby radius. The modeled currents, however, describe a highly three‐dimensional system, where rotational effects are of order‐one importance. Along‐shelf wind events drive a rapid baroclinic exchange, mediated by coastally trapped waves, which propagate from the shelf to the glacier terminus along the right‐hand boundary of the fjord. The terminus was regularly exposed to around 0.5 TW of heating over the winter season. Wave energy dissipation provoked vertical mixing, generating a buoyancy flux which strengthened overturning. The coastally trapped waves also acted to strengthen the cyclonic mean flow via Stokes' drift. Although the outgoing wave was less energetic and located at the opposite sidewall, the fjord did exhibit a resonant response, suggesting that fjords of this scale can also exhibit two‐dimensional dynamics. Long periods of moderate wind stress greatly enhanced the cross‐shelf delivery of heat toward the fjord, in comparison to stronger events over short intervals. This suggests that the timescale over which the shelf wind field varies is a key parameter in dictating wintertime heat delivery from the ocean to the ice sheet.more » « less
An official website of the United States government
