- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Frederickson, Bryce (3)
-
Araujo, Igor (1)
-
Krueger, Robert A (1)
-
Lidický, Bernard (1)
-
McAllister, Tyrrell B (1)
-
Pfender, Florian (1)
-
Rödl, Vojtěch (1)
-
Sales, Marcelo (1)
-
Spiro, Sam (1)
-
Stucky, Eric Nathan (1)
-
Yepremyan, Liana (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT For $$B \subseteq \mathbb F_q^m$$, the nth affine extremal number of B is the maximum cardinality of a set $$A \subseteq \mathbb F_q^n$$ with no subset, which is affinely isomorphic to B. Furstenberg and Katznelson proved that for any $$B \subseteq \mathbb F_q^m$$, the nth affine extremal number of B is $o(q^n)$ as $$n \to \infty$$. By counting affine homomorphisms between subsets of $$\mathbb F_q^n$$, we derive new bounds and give new proofs of some previously known bounds for certain affine extremal numbers. At the same time, we establish corresponding supersaturation results. We connect these bounds to certain Ramsey-type numbers in vector spaces over finite fields. For $$s,t \geq 1$$, let $$R_q(s,t)$$ denote the minimum n such that in every red–blue coloring of the one-dimensional subspaces of $$\mathbb F_q^n$$, there is either a red s-dimensional subspace or a blue t-dimensional subspace of $$\mathbb F_q^n$$. The existence of these numbers is a special case of a well-known theorem of Graham, Leeb and Rothschild. We improve the best-known upper bounds on $$R_2(2,t)$$, $$R_3(2,t)$$, $$R_2(t,t)$$ and $$R_3(t,t)$$.more » « lessFree, publicly-accessible full text available December 17, 2025
-
Araujo, Igor; Frederickson, Bryce; Krueger, Robert A; Lidický, Bernard; McAllister, Tyrrell B; Pfender, Florian; Spiro, Sam; Stucky, Eric Nathan (, Discrete & Computational Geometry)Free, publicly-accessible full text available March 1, 2026
-
Frederickson, Bryce; Rödl, Vojtěch; Sales, Marcelo (, Combinatorial Theory)
An official website of the United States government
