skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fredrickson, Glenn H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available October 22, 2025
  3. Free, publicly-accessible full text available December 10, 2025
  4. Supramolecular polymer networks exhibit unique and tunable thermodynamic and dynamic properties that are attractive for a wide array of applications, such as adhesives, rheology modifiers, and compatibilizers. Coherent states (CS) field theories have emerged as a powerful approach for describing the possibly infinite reaction products that result from associating polymers. Up to this point, CS theories have focused on relatively simple polymer architectures. In this work, we develop an extension of the CS framework to study polymers with reversible bonds distributed along the polymer backbone, opening a broad array of new materials that can be studied with theoretical methods. We use this framework to discern the role of reactive site placement on sol–gel phase behavior, including the prediction of a microstructured gel phase that has not been reported for neutral polymer gels. Our results highlight the subtleties of thermodynamics in supramolecular polymers and the necessity for theories that capture them. 
    more » « less
    Free, publicly-accessible full text available August 7, 2025
  5. Free, publicly-accessible full text available October 30, 2025
  6. Free, publicly-accessible full text available September 9, 2025
  7. Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes. 
    more » « less
  8. Field-theoretic simulations are numerical treatments of polymer field theory models that go beyond the mean-field self-consistent field theory level and have successfully captured a range of mesoscopic phenomena. Inherent in molecularly-based field theories is a “sign problem” associated with complex-valued Hamiltonian functionals. One route to field-theoretic simulations utilizes the complex Langevin (CL) method to importance sample complex-valued field configurations to bypass the sign problem. Although CL is exact in principle, it can be difficult to stabilize in strongly fluctuating systems. An alternate approach for blends or block copolymers with two segment species is to make a “partial saddle point approximation” (PSPA) in which the stiff pressure-like field is constrained to its mean-field value, eliminating the sign problem in the remaining field theory, allowing for traditional (real) sampling methods. The consequences of the PSPA are relatively unknown, and direct comparisons between the two methods are limited. Here, we quantitatively compare thermodynamic observables, order-disorder transitions, and periodic domain sizes predicted by the two approaches for a weakly compressible model of AB diblock copolymers. Using Gaussian fluctuation analysis, we validate our simulation observations, finding that the PSPA incorrectly captures trends in fluctuation corrections to certain thermodynamic observables, microdomain spacing, and location of order-disorder transitions. For incompressible models with contact interactions, we find similar discrepancies between the predictions of CL and PSPA, but these can be minimized by regularization procedures such as Morse calibration. These findings mandate caution in applying the PSPA to broader classes of soft-matter models and systems. 
    more » « less